Properties

Label 2-138-69.44-c1-0-1
Degree $2$
Conductor $138$
Sign $0.0925 - 0.995i$
Analytic cond. $1.10193$
Root an. cond. $1.04973$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.540 + 0.841i)2-s + (1.29 + 1.14i)3-s + (−0.415 − 0.909i)4-s + (−1.43 − 0.422i)5-s + (−1.66 + 0.469i)6-s + (3.34 + 2.89i)7-s + (0.989 + 0.142i)8-s + (0.362 + 2.97i)9-s + (1.13 − 0.981i)10-s + (−1.75 + 1.12i)11-s + (0.505 − 1.65i)12-s + (−2.50 − 2.88i)13-s + (−4.24 + 1.24i)14-s + (−1.37 − 2.19i)15-s + (−0.654 + 0.755i)16-s + (1.53 − 3.35i)17-s + ⋯
L(s)  = 1  + (−0.382 + 0.594i)2-s + (0.748 + 0.662i)3-s + (−0.207 − 0.454i)4-s + (−0.642 − 0.188i)5-s + (−0.680 + 0.191i)6-s + (1.26 + 1.09i)7-s + (0.349 + 0.0503i)8-s + (0.120 + 0.992i)9-s + (0.358 − 0.310i)10-s + (−0.528 + 0.339i)11-s + (0.146 − 0.478i)12-s + (−0.694 − 0.801i)13-s + (−1.13 + 0.332i)14-s + (−0.356 − 0.567i)15-s + (−0.163 + 0.188i)16-s + (0.372 − 0.814i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0925 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0925 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.0925 - 0.995i$
Analytic conductor: \(1.10193\)
Root analytic conductor: \(1.04973\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :1/2),\ 0.0925 - 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.803619 + 0.732370i\)
\(L(\frac12)\) \(\approx\) \(0.803619 + 0.732370i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.540 - 0.841i)T \)
3 \( 1 + (-1.29 - 1.14i)T \)
23 \( 1 + (-4.39 + 1.92i)T \)
good5 \( 1 + (1.43 + 0.422i)T + (4.20 + 2.70i)T^{2} \)
7 \( 1 + (-3.34 - 2.89i)T + (0.996 + 6.92i)T^{2} \)
11 \( 1 + (1.75 - 1.12i)T + (4.56 - 10.0i)T^{2} \)
13 \( 1 + (2.50 + 2.88i)T + (-1.85 + 12.8i)T^{2} \)
17 \( 1 + (-1.53 + 3.35i)T + (-11.1 - 12.8i)T^{2} \)
19 \( 1 + (-0.806 + 0.368i)T + (12.4 - 14.3i)T^{2} \)
29 \( 1 + (-4.85 - 2.21i)T + (18.9 + 21.9i)T^{2} \)
31 \( 1 + (-1.34 + 9.32i)T + (-29.7 - 8.73i)T^{2} \)
37 \( 1 + (0.717 + 2.44i)T + (-31.1 + 20.0i)T^{2} \)
41 \( 1 + (0.0613 - 0.209i)T + (-34.4 - 22.1i)T^{2} \)
43 \( 1 + (3.01 - 0.433i)T + (41.2 - 12.1i)T^{2} \)
47 \( 1 + 9.62iT - 47T^{2} \)
53 \( 1 + (8.08 - 9.32i)T + (-7.54 - 52.4i)T^{2} \)
59 \( 1 + (6.92 - 6.00i)T + (8.39 - 58.3i)T^{2} \)
61 \( 1 + (-6.28 - 0.903i)T + (58.5 + 17.1i)T^{2} \)
67 \( 1 + (1.67 - 2.60i)T + (-27.8 - 60.9i)T^{2} \)
71 \( 1 + (-6.11 + 9.50i)T + (-29.4 - 64.5i)T^{2} \)
73 \( 1 + (1.78 + 3.91i)T + (-47.8 + 55.1i)T^{2} \)
79 \( 1 + (9.86 - 8.54i)T + (11.2 - 78.1i)T^{2} \)
83 \( 1 + (3.42 - 1.00i)T + (69.8 - 44.8i)T^{2} \)
89 \( 1 + (-1.50 - 10.4i)T + (-85.3 + 25.0i)T^{2} \)
97 \( 1 + (1.95 - 6.65i)T + (-81.6 - 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76881949428642008575506441875, −12.35788733961325267940718731983, −11.28148279906720346793889544250, −10.10997770120989258663194764494, −9.037206882198360919966223947437, −8.117936200696149474042521978083, −7.55685077501638919443061132169, −5.37069944700994717959544131447, −4.64424647556260584316977057366, −2.58353133674491013180686074384, 1.50151487639352558138632540121, 3.31072776382956083178520121905, 4.62171219906618617133786422214, 6.98363779097904201053117149378, 7.82036827654893150162757882168, 8.489115126370035706832609239861, 9.921064884983835113764471700419, 11.03545729415343322381052937497, 11.82242803204330526966398738715, 12.89801999090375819650612248082

Graph of the $Z$-function along the critical line