Properties

Label 2-138-23.3-c1-0-2
Degree $2$
Conductor $138$
Sign $0.990 - 0.140i$
Analytic cond. $1.10193$
Root an. cond. $1.04973$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.142 + 0.989i)2-s + (0.415 − 0.909i)3-s + (−0.959 + 0.281i)4-s + (1.59 − 1.83i)5-s + (0.959 + 0.281i)6-s + (1.56 − 1.00i)7-s + (−0.415 − 0.909i)8-s + (−0.654 − 0.755i)9-s + (2.04 + 1.31i)10-s + (−0.790 + 5.49i)11-s + (−0.142 + 0.989i)12-s + (0.966 + 0.620i)13-s + (1.21 + 1.40i)14-s + (−1.01 − 2.21i)15-s + (0.841 − 0.540i)16-s + (−7.20 − 2.11i)17-s + ⋯
L(s)  = 1  + (0.100 + 0.699i)2-s + (0.239 − 0.525i)3-s + (−0.479 + 0.140i)4-s + (0.712 − 0.822i)5-s + (0.391 + 0.115i)6-s + (0.590 − 0.379i)7-s + (−0.146 − 0.321i)8-s + (−0.218 − 0.251i)9-s + (0.647 + 0.415i)10-s + (−0.238 + 1.65i)11-s + (−0.0410 + 0.285i)12-s + (0.267 + 0.172i)13-s + (0.324 + 0.374i)14-s + (−0.260 − 0.571i)15-s + (0.210 − 0.135i)16-s + (−1.74 − 0.513i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.140i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 - 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.990 - 0.140i$
Analytic conductor: \(1.10193\)
Root analytic conductor: \(1.04973\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :1/2),\ 0.990 - 0.140i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.29224 + 0.0911314i\)
\(L(\frac12)\) \(\approx\) \(1.29224 + 0.0911314i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.142 - 0.989i)T \)
3 \( 1 + (-0.415 + 0.909i)T \)
23 \( 1 + (2.45 - 4.12i)T \)
good5 \( 1 + (-1.59 + 1.83i)T + (-0.711 - 4.94i)T^{2} \)
7 \( 1 + (-1.56 + 1.00i)T + (2.90 - 6.36i)T^{2} \)
11 \( 1 + (0.790 - 5.49i)T + (-10.5 - 3.09i)T^{2} \)
13 \( 1 + (-0.966 - 0.620i)T + (5.40 + 11.8i)T^{2} \)
17 \( 1 + (7.20 + 2.11i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (-4.29 + 1.26i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (2.81 + 0.827i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (0.863 + 1.88i)T + (-20.3 + 23.4i)T^{2} \)
37 \( 1 + (5.06 + 5.84i)T + (-5.26 + 36.6i)T^{2} \)
41 \( 1 + (0.450 - 0.520i)T + (-5.83 - 40.5i)T^{2} \)
43 \( 1 + (3.55 - 7.79i)T + (-28.1 - 32.4i)T^{2} \)
47 \( 1 - 7.09T + 47T^{2} \)
53 \( 1 + (-4.53 + 2.91i)T + (22.0 - 48.2i)T^{2} \)
59 \( 1 + (3.39 + 2.18i)T + (24.5 + 53.6i)T^{2} \)
61 \( 1 + (0.157 + 0.344i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (0.420 + 2.92i)T + (-64.2 + 18.8i)T^{2} \)
71 \( 1 + (-2.14 - 14.9i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (-11.0 + 3.23i)T + (61.4 - 39.4i)T^{2} \)
79 \( 1 + (-8.86 - 5.69i)T + (32.8 + 71.8i)T^{2} \)
83 \( 1 + (6.84 + 7.89i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (-4.47 + 9.80i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (-6.51 + 7.51i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36713239730757682843095593640, −12.58093036157324492483775612171, −11.33939064989649919578646807571, −9.695549365076392503002088535454, −9.010484205403930875781914594549, −7.70122331784626184246561586672, −6.90100728763865875786995383329, −5.40410256602741021449250087063, −4.40942531140105547465384906918, −1.87233568129867072492295421085, 2.32714483661903907404796845019, 3.59839527451307880607111903366, 5.25486964140123537439937979256, 6.36551773853190564353564352570, 8.302981658484920195089875631105, 9.056063483119730713962239800975, 10.48196516847350860961507709473, 10.84957581993987423501264403715, 11.91075791300733914431725357184, 13.51873932555049349241231201169

Graph of the $Z$-function along the critical line