Properties

Label 4-1368e2-1.1-c0e2-0-7
Degree $4$
Conductor $1871424$
Sign $1$
Analytic cond. $0.466107$
Root an. cond. $0.826269$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 6-s + 8-s + 3·11-s − 16-s + 3·17-s + 19-s − 3·22-s + 24-s − 2·25-s − 27-s + 3·33-s − 3·34-s − 38-s − 4·41-s − 43-s − 48-s − 49-s + 2·50-s + 3·51-s + 54-s + 57-s + 4·59-s + 64-s − 3·66-s − 73-s + ⋯
L(s)  = 1  − 2-s + 3-s − 6-s + 8-s + 3·11-s − 16-s + 3·17-s + 19-s − 3·22-s + 24-s − 2·25-s − 27-s + 3·33-s − 3·34-s − 38-s − 4·41-s − 43-s − 48-s − 49-s + 2·50-s + 3·51-s + 54-s + 57-s + 4·59-s + 64-s − 3·66-s − 73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1871424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1871424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1871424\)    =    \(2^{6} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.466107\)
Root analytic conductor: \(0.826269\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1871424,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.078773335\)
\(L(\frac12)\) \(\approx\) \(1.078773335\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 - T + T^{2} \)
good5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2^2$ \( 1 - T^{2} + T^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$ \( ( 1 + T )^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_1$ \( ( 1 - T )^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
79$C_2^2$ \( 1 - T^{2} + T^{4} \)
83$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
89$C_2$ \( ( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.700968481574518812859086126834, −9.691436649731093004354316564194, −9.283277366879567426371252237900, −8.755898085737955640536920359841, −8.329777552555637362625282839459, −8.167677057350766313972447672209, −7.84952708259084775549217524152, −7.23881186745261518698054045612, −6.77702984096318369222910684008, −6.67774911319977830811908147441, −5.81667675292754270818685920830, −5.35733960171460311550567419590, −5.17340891428238780603104114864, −4.01138017801110516411969887790, −3.96405014548236946409448763123, −3.36367202777032325278742053583, −3.27412113949562425648995345187, −2.05351319272735566573960121163, −1.44007819683684671557996598702, −1.26001695613468266332237377801, 1.26001695613468266332237377801, 1.44007819683684671557996598702, 2.05351319272735566573960121163, 3.27412113949562425648995345187, 3.36367202777032325278742053583, 3.96405014548236946409448763123, 4.01138017801110516411969887790, 5.17340891428238780603104114864, 5.35733960171460311550567419590, 5.81667675292754270818685920830, 6.67774911319977830811908147441, 6.77702984096318369222910684008, 7.23881186745261518698054045612, 7.84952708259084775549217524152, 8.167677057350766313972447672209, 8.329777552555637362625282839459, 8.755898085737955640536920359841, 9.283277366879567426371252237900, 9.691436649731093004354316564194, 9.700968481574518812859086126834

Graph of the $Z$-function along the critical line