Properties

Label 8-1368e4-1.1-c0e4-0-0
Degree $8$
Conductor $3.502\times 10^{12}$
Sign $1$
Analytic cond. $0.217256$
Root an. cond. $0.826269$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·4-s + 10·9-s + 2·11-s + 8·12-s + 3·16-s − 2·17-s + 4·19-s − 25-s − 20·27-s − 8·33-s − 20·36-s + 2·41-s − 4·44-s − 12·48-s − 49-s + 8·51-s − 16·57-s − 2·59-s − 4·64-s + 8·67-s + 4·68-s − 2·73-s + 4·75-s − 8·76-s + 35·81-s + 2·83-s + ⋯
L(s)  = 1  − 4·3-s − 2·4-s + 10·9-s + 2·11-s + 8·12-s + 3·16-s − 2·17-s + 4·19-s − 25-s − 20·27-s − 8·33-s − 20·36-s + 2·41-s − 4·44-s − 12·48-s − 49-s + 8·51-s − 16·57-s − 2·59-s − 4·64-s + 8·67-s + 4·68-s − 2·73-s + 4·75-s − 8·76-s + 35·81-s + 2·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(0.217256\)
Root analytic conductor: \(0.826269\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{8} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2063659436\)
\(L(\frac12)\) \(\approx\) \(0.2063659436\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_1$ \( ( 1 + T )^{4} \)
19$C_1$ \( ( 1 - T )^{4} \)
good5$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
7$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
31$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_1$ \( ( 1 - T )^{8} \)
71$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.00975701338042060212418530383, −6.88338426545065939874180397311, −6.51697632667045725581370962330, −6.16295610399732562447420121596, −6.14046629083461239473195480549, −6.00881636040310916099743565699, −5.68533425837039125906128231297, −5.43551125392601401274057227010, −5.20759666615194740125820140503, −5.12940009761133881595293212754, −5.08414426631715580775427205765, −4.66874248408021146650973203897, −4.37402831368063362271674168739, −4.30356943788939694742619366100, −4.15116533850862566982755605435, −3.70736182725343264273357302482, −3.65820971692902584889112492813, −3.50908298697910065660798941257, −2.99455399907437500758744137668, −2.28048000810519457532227374482, −1.93328793093652259146125002360, −1.41040769341772955298021833895, −1.25703114398186467022443669450, −0.891104969671182459887282015517, −0.64883884252614936288081504103, 0.64883884252614936288081504103, 0.891104969671182459887282015517, 1.25703114398186467022443669450, 1.41040769341772955298021833895, 1.93328793093652259146125002360, 2.28048000810519457532227374482, 2.99455399907437500758744137668, 3.50908298697910065660798941257, 3.65820971692902584889112492813, 3.70736182725343264273357302482, 4.15116533850862566982755605435, 4.30356943788939694742619366100, 4.37402831368063362271674168739, 4.66874248408021146650973203897, 5.08414426631715580775427205765, 5.12940009761133881595293212754, 5.20759666615194740125820140503, 5.43551125392601401274057227010, 5.68533425837039125906128231297, 6.00881636040310916099743565699, 6.14046629083461239473195480549, 6.16295610399732562447420121596, 6.51697632667045725581370962330, 6.88338426545065939874180397311, 7.00975701338042060212418530383

Graph of the $Z$-function along the critical line