Properties

Label 2-136-17.12-c2-0-0
Degree $2$
Conductor $136$
Sign $-0.978 - 0.204i$
Analytic cond. $3.70573$
Root an. cond. $1.92502$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.705 − 0.471i)3-s + (−6.65 − 1.32i)5-s + (−11.2 + 2.23i)7-s + (−3.16 + 7.64i)9-s + (1.14 − 1.71i)11-s + (−0.784 − 0.784i)13-s + (−5.32 + 2.20i)15-s + (15.3 + 7.33i)17-s + (−8.11 − 19.5i)19-s + (−6.86 + 6.86i)21-s + (−24.3 − 16.2i)23-s + (19.4 + 8.06i)25-s + (2.86 + 14.3i)27-s + (−7.57 + 38.0i)29-s + (−23.9 − 35.8i)31-s + ⋯
L(s)  = 1  + (0.235 − 0.157i)3-s + (−1.33 − 0.264i)5-s + (−1.60 + 0.318i)7-s + (−0.352 + 0.849i)9-s + (0.103 − 0.155i)11-s + (−0.0603 − 0.0603i)13-s + (−0.354 + 0.146i)15-s + (0.902 + 0.431i)17-s + (−0.426 − 1.03i)19-s + (−0.327 + 0.327i)21-s + (−1.05 − 0.707i)23-s + (0.779 + 0.322i)25-s + (0.105 + 0.532i)27-s + (−0.261 + 1.31i)29-s + (−0.773 − 1.15i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.204i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(136\)    =    \(2^{3} \cdot 17\)
Sign: $-0.978 - 0.204i$
Analytic conductor: \(3.70573\)
Root analytic conductor: \(1.92502\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{136} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 136,\ (\ :1),\ -0.978 - 0.204i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.00733873 + 0.0710732i\)
\(L(\frac12)\) \(\approx\) \(0.00733873 + 0.0710732i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + (-15.3 - 7.33i)T \)
good3 \( 1 + (-0.705 + 0.471i)T + (3.44 - 8.31i)T^{2} \)
5 \( 1 + (6.65 + 1.32i)T + (23.0 + 9.56i)T^{2} \)
7 \( 1 + (11.2 - 2.23i)T + (45.2 - 18.7i)T^{2} \)
11 \( 1 + (-1.14 + 1.71i)T + (-46.3 - 111. i)T^{2} \)
13 \( 1 + (0.784 + 0.784i)T + 169iT^{2} \)
19 \( 1 + (8.11 + 19.5i)T + (-255. + 255. i)T^{2} \)
23 \( 1 + (24.3 + 16.2i)T + (202. + 488. i)T^{2} \)
29 \( 1 + (7.57 - 38.0i)T + (-776. - 321. i)T^{2} \)
31 \( 1 + (23.9 + 35.8i)T + (-367. + 887. i)T^{2} \)
37 \( 1 + (-45.2 + 30.2i)T + (523. - 1.26e3i)T^{2} \)
41 \( 1 + (67.0 - 13.3i)T + (1.55e3 - 643. i)T^{2} \)
43 \( 1 + (3.43 - 8.30i)T + (-1.30e3 - 1.30e3i)T^{2} \)
47 \( 1 + (-40.2 - 40.2i)T + 2.20e3iT^{2} \)
53 \( 1 + (-9.59 - 23.1i)T + (-1.98e3 + 1.98e3i)T^{2} \)
59 \( 1 + (12.9 + 5.36i)T + (2.46e3 + 2.46e3i)T^{2} \)
61 \( 1 + (-7.65 - 38.4i)T + (-3.43e3 + 1.42e3i)T^{2} \)
67 \( 1 - 41.3iT - 4.48e3T^{2} \)
71 \( 1 + (79.4 - 53.0i)T + (1.92e3 - 4.65e3i)T^{2} \)
73 \( 1 + (40.8 + 8.12i)T + (4.92e3 + 2.03e3i)T^{2} \)
79 \( 1 + (6.76 - 10.1i)T + (-2.38e3 - 5.76e3i)T^{2} \)
83 \( 1 + (20.2 - 8.38i)T + (4.87e3 - 4.87e3i)T^{2} \)
89 \( 1 + (56.0 - 56.0i)T - 7.92e3iT^{2} \)
97 \( 1 + (-19.7 + 99.4i)T + (-8.69e3 - 3.60e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16353348168950417295993287534, −12.56453108489373243714432797981, −11.54500712922383480767197624043, −10.41865498703455162792531746371, −9.139355627365157122245987742871, −8.160300459395513040763213624013, −7.15440887692669676081827384341, −5.78900134368597082718325861599, −4.10563099120265241439712731079, −2.87481745835692926074835844951, 0.04430321039069886176169711827, 3.31644252862560598523509290925, 3.88120651853539438951317380123, 6.02350094344745803950302741518, 7.11165177682328144009655285622, 8.175151422246945536547631731173, 9.507491509268153374373800546472, 10.25468313682374985156170679454, 11.82977593729105643355380836244, 12.21689977230360834503328145020

Graph of the $Z$-function along the critical line