Properties

Label 8-1350e4-1.1-c3e4-0-5
Degree $8$
Conductor $3.322\times 10^{12}$
Sign $1$
Analytic cond. $4.02531\times 10^{7}$
Root an. cond. $8.92482$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 66·11-s + 48·16-s − 230·19-s + 126·29-s + 590·31-s − 1.28e3·41-s − 528·44-s − 433·49-s + 2.49e3·59-s + 170·61-s − 256·64-s − 2.98e3·71-s + 1.84e3·76-s − 2.52e3·79-s + 1.36e3·89-s − 2.16e3·101-s + 4.44e3·109-s − 1.00e3·116-s − 797·121-s − 4.72e3·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s + 1.80·11-s + 3/4·16-s − 2.77·19-s + 0.806·29-s + 3.41·31-s − 4.89·41-s − 1.80·44-s − 1.26·49-s + 5.50·59-s + 0.356·61-s − 1/2·64-s − 4.99·71-s + 2.77·76-s − 3.60·79-s + 1.62·89-s − 2.13·101-s + 3.90·109-s − 0.806·116-s − 0.598·121-s − 3.41·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(4.02531\times 10^{7}\)
Root analytic conductor: \(8.92482\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 5^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(1.717290858\)
\(L(\frac12)\) \(\approx\) \(1.717290858\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 + 433 T^{2} + 281268 T^{4} + 433 p^{6} T^{6} + p^{12} T^{8} \)
11$D_{4}$ \( ( 1 - 3 p T + 2032 T^{2} - 3 p^{4} T^{3} + p^{6} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 + 478 T^{2} - 5071725 T^{4} + 478 p^{6} T^{6} + p^{12} T^{8} \)
17$D_4\times C_2$ \( 1 - 16547 T^{2} + 114379188 T^{4} - 16547 p^{6} T^{6} + p^{12} T^{8} \)
19$D_{4}$ \( ( 1 + 115 T + 16122 T^{2} + 115 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 145 p T^{2} + 288905028 T^{4} - 145 p^{7} T^{6} + p^{12} T^{8} \)
29$D_{4}$ \( ( 1 - 63 T + 5560 T^{2} - 63 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 295 T + 58782 T^{2} - 295 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 176711 T^{2} + 12781255848 T^{4} - 176711 p^{6} T^{6} + p^{12} T^{8} \)
41$D_{4}$ \( ( 1 + 642 T + 208402 T^{2} + 642 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 231155 T^{2} + 24116964048 T^{4} - 231155 p^{6} T^{6} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 - 94667 T^{2} + 19021837128 T^{4} - 94667 p^{6} T^{6} + p^{12} T^{8} \)
53$D_4\times C_2$ \( 1 - 521312 T^{2} + 111786825390 T^{4} - 521312 p^{6} T^{6} + p^{12} T^{8} \)
59$D_{4}$ \( ( 1 - 1248 T + 742390 T^{2} - 1248 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 85 T + 447648 T^{2} - 85 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 701699 T^{2} + 296133666432 T^{4} - 701699 p^{6} T^{6} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 + 1494 T + 1241350 T^{2} + 1494 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 188113 T^{2} + 283452460080 T^{4} + 188113 p^{6} T^{6} + p^{12} T^{8} \)
79$D_{4}$ \( ( 1 + 16 p T + 1353021 T^{2} + 16 p^{4} T^{3} + p^{6} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 289220 T^{2} - 150276570762 T^{4} - 289220 p^{6} T^{6} + p^{12} T^{8} \)
89$D_{4}$ \( ( 1 - 684 T + 357586 T^{2} - 684 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 2321471 T^{2} + 2592024266208 T^{4} - 2321471 p^{6} T^{6} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.36119839360652819847928809857, −6.29925760175094368640067485278, −6.24015564952804046349784647741, −5.80139484127525465601505752575, −5.71483869658418629379363684367, −5.16154140766385164422358270443, −5.02172169871310044849866523393, −4.99318277837989414115082468556, −4.61380170853469689335275566769, −4.30678583398344722015085098398, −4.29538551677891298249716620497, −4.03246099444963954370593242602, −3.89709782159346525394716737351, −3.40594477052340722495809466654, −3.35854313353701223974106608805, −2.98018699256573443830349574049, −2.70728954364549824275177257075, −2.39680267672207565907966622920, −2.12163771242230435580149080675, −1.63974010500570077866732593658, −1.55529729459022659721023039565, −1.14475341548482326804806119234, −0.994609741045932223332476787107, −0.35594656077013404304096723381, −0.24208326345877002729402555958, 0.24208326345877002729402555958, 0.35594656077013404304096723381, 0.994609741045932223332476787107, 1.14475341548482326804806119234, 1.55529729459022659721023039565, 1.63974010500570077866732593658, 2.12163771242230435580149080675, 2.39680267672207565907966622920, 2.70728954364549824275177257075, 2.98018699256573443830349574049, 3.35854313353701223974106608805, 3.40594477052340722495809466654, 3.89709782159346525394716737351, 4.03246099444963954370593242602, 4.29538551677891298249716620497, 4.30678583398344722015085098398, 4.61380170853469689335275566769, 4.99318277837989414115082468556, 5.02172169871310044849866523393, 5.16154140766385164422358270443, 5.71483869658418629379363684367, 5.80139484127525465601505752575, 6.24015564952804046349784647741, 6.29925760175094368640067485278, 6.36119839360652819847928809857

Graph of the $Z$-function along the critical line