Properties

Label 4-1350e2-1.1-c2e2-0-6
Degree $4$
Conductor $1822500$
Sign $1$
Analytic cond. $1353.12$
Root an. cond. $6.06505$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 10·7-s + 18·13-s + 4·16-s − 42·19-s + 20·28-s + 80·31-s + 50·37-s + 128·43-s − 23·49-s − 36·52-s − 194·61-s − 8·64-s + 262·67-s − 34·73-s + 84·76-s + 234·79-s − 180·91-s + 82·97-s − 26·103-s − 16·109-s − 40·112-s + 240·121-s − 160·124-s + 127-s + 131-s + 420·133-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.42·7-s + 1.38·13-s + 1/4·16-s − 2.21·19-s + 5/7·28-s + 2.58·31-s + 1.35·37-s + 2.97·43-s − 0.469·49-s − 0.692·52-s − 3.18·61-s − 1/8·64-s + 3.91·67-s − 0.465·73-s + 1.10·76-s + 2.96·79-s − 1.97·91-s + 0.845·97-s − 0.252·103-s − 0.146·109-s − 0.357·112-s + 1.98·121-s − 1.29·124-s + 0.00787·127-s + 0.00763·131-s + 3.15·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1822500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1822500 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1822500\)    =    \(2^{2} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1353.12\)
Root analytic conductor: \(6.06505\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1822500,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.044595330\)
\(L(\frac12)\) \(\approx\) \(2.044595330\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 + 5 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 240 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 9 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 450 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + 21 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1056 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 224 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 40 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 25 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 624 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 64 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 3906 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 416 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 + 1230 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 97 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 131 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 2144 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 17 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 117 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 10416 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 + 5790 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 - 41 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.466545068184599921199674824625, −9.347961007809038736370674560542, −8.843336536976711612009453967534, −8.435046346267932872607269442227, −7.976143456787218784838568401700, −7.88768964287094247262380070575, −7.05338880430828772794540463433, −6.42977018471664455354639522603, −6.37362001659865149908092510101, −6.11669022322999853965129551991, −5.65713155134435834754461036828, −4.70466518296137287597086681587, −4.58525772092427123404811728486, −3.94980913037106837859697732271, −3.68754695833858244509889452591, −2.98103994201911336432867238980, −2.58809173768703057628543248798, −1.93203843769617748910126047035, −0.886912598145638634744487193349, −0.54737041543364582378672122098, 0.54737041543364582378672122098, 0.886912598145638634744487193349, 1.93203843769617748910126047035, 2.58809173768703057628543248798, 2.98103994201911336432867238980, 3.68754695833858244509889452591, 3.94980913037106837859697732271, 4.58525772092427123404811728486, 4.70466518296137287597086681587, 5.65713155134435834754461036828, 6.11669022322999853965129551991, 6.37362001659865149908092510101, 6.42977018471664455354639522603, 7.05338880430828772794540463433, 7.88768964287094247262380070575, 7.976143456787218784838568401700, 8.435046346267932872607269442227, 8.843336536976711612009453967534, 9.347961007809038736370674560542, 9.466545068184599921199674824625

Graph of the $Z$-function along the critical line