Properties

Label 16-1350e8-1.1-c1e8-0-12
Degree $16$
Conductor $1.103\times 10^{25}$
Sign $1$
Analytic cond. $1.82342\times 10^{8}$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·11-s + 16-s + 32·31-s + 84·41-s + 16·61-s + 48·101-s + 34·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 12·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  + 3.61·11-s + 1/4·16-s + 5.74·31-s + 13.1·41-s + 2.04·61-s + 4.77·101-s + 3.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.904·176-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{24} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(1.82342\times 10^{8}\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{24} \cdot 5^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(27.08066517\)
\(L(\frac12)\) \(\approx\) \(27.08066517\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T^{4} + T^{8} \)
3 \( 1 \)
5 \( 1 \)
good7 \( ( 1 + 23 T^{4} + p^{4} T^{8} )( 1 + 71 T^{4} + p^{4} T^{8} ) \)
11 \( ( 1 - 3 T + 14 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{4} \)
13 \( 1 + 142 T^{4} - 8397 T^{8} + 142 p^{4} T^{12} + p^{8} T^{16} \)
17 \( ( 1 + 47 T^{4} + p^{4} T^{8} )^{2} \)
19 \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{4} \)
23 \( 1 + 958 T^{4} + 637923 T^{8} + 958 p^{4} T^{12} + p^{8} T^{16} \)
29 \( ( 1 - 46 T^{2} + 1275 T^{4} - 46 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{4} \)
37 \( ( 1 - 2062 T^{4} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 21 T + 188 T^{2} - 21 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( 1 + 217 T^{4} - 3371712 T^{8} + 217 p^{4} T^{12} + p^{8} T^{16} \)
47 \( 1 + 1054 T^{4} - 3768765 T^{8} + 1054 p^{4} T^{12} + p^{8} T^{16} \)
53 \( ( 1 + p^{2} T^{4} )^{4} \)
59 \( ( 1 + 29 T^{2} - 2640 T^{4} + 29 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 4 T - 45 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( 1 - 8183 T^{4} + 46810368 T^{8} - 8183 p^{4} T^{12} + p^{8} T^{16} \)
71 \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{4} \)
73 \( ( 1 - 5617 T^{4} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{2}( 1 + 131 T^{2} + p^{2} T^{4} )^{2} \)
83 \( 1 + 13294 T^{4} + 129272115 T^{8} + 13294 p^{4} T^{12} + p^{8} T^{16} \)
89 \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{4} \)
97 \( 1 + 4657 T^{4} - 66841632 T^{8} + 4657 p^{4} T^{12} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.25676001045675157739447144822, −3.98059672559152549664789549557, −3.77514477809048064602576932030, −3.74736576765496857301960795222, −3.61366921042722631355712365391, −3.47498959117995731945360308689, −3.37959703726181684898633661725, −3.35768836379936555828180629580, −2.98435073269791264841752959782, −2.66590080420127177562767488540, −2.61544267416425559663688553049, −2.56016403842481588775586152513, −2.46478719405779264742020312495, −2.46016761592660748385908540592, −2.36193233733325809696846817832, −2.16614880284205199443177110876, −2.02292298654385354391132159517, −1.44304911140765108753078252558, −1.27246313750697689673343720515, −1.12493546108315931046033312760, −1.06534368102974631754345174826, −1.03038053774391207503686253563, −0.976686138621032752247737053073, −0.76489559445784574508932143395, −0.39267895150733769667156888729, 0.39267895150733769667156888729, 0.76489559445784574508932143395, 0.976686138621032752247737053073, 1.03038053774391207503686253563, 1.06534368102974631754345174826, 1.12493546108315931046033312760, 1.27246313750697689673343720515, 1.44304911140765108753078252558, 2.02292298654385354391132159517, 2.16614880284205199443177110876, 2.36193233733325809696846817832, 2.46016761592660748385908540592, 2.46478719405779264742020312495, 2.56016403842481588775586152513, 2.61544267416425559663688553049, 2.66590080420127177562767488540, 2.98435073269791264841752959782, 3.35768836379936555828180629580, 3.37959703726181684898633661725, 3.47498959117995731945360308689, 3.61366921042722631355712365391, 3.74736576765496857301960795222, 3.77514477809048064602576932030, 3.98059672559152549664789549557, 4.25676001045675157739447144822

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.