Properties

Label 8-1350e4-1.1-c1e4-0-7
Degree $8$
Conductor $3.322\times 10^{12}$
Sign $1$
Analytic cond. $13503.4$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 12·11-s + 16·19-s − 6·29-s + 8·31-s − 6·41-s + 12·44-s − 13·49-s − 12·59-s + 26·61-s − 64-s + 24·71-s + 16·76-s − 20·79-s + 36·89-s + 12·101-s + 28·109-s − 6·116-s + 58·121-s + 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 1/2·4-s + 3.61·11-s + 3.67·19-s − 1.11·29-s + 1.43·31-s − 0.937·41-s + 1.80·44-s − 1.85·49-s − 1.56·59-s + 3.32·61-s − 1/8·64-s + 2.84·71-s + 1.83·76-s − 2.25·79-s + 3.81·89-s + 1.19·101-s + 2.68·109-s − 0.557·116-s + 5.27·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(13503.4\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.807299408\)
\(L(\frac12)\) \(\approx\) \(7.807299408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$$\times$$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )( 1 + 23 T^{2} + p^{2} T^{4} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
23$C_2^3$ \( 1 - 35 T^{2} + 696 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
37$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2$$\times$$C_2^2$ \( ( 1 - 61 T^{2} + p^{2} T^{4} )( 1 + 83 T^{2} + p^{2} T^{4} ) \)
47$C_2^3$ \( 1 + 85 T^{2} + 5016 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
67$C_2^3$ \( 1 - 35 T^{2} - 3264 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 10 T + 21 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 85 T^{2} + 336 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )^{4} \)
97$C_2^3$ \( 1 + 190 T^{2} + 26691 T^{4} + 190 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.97193588989761362503316452261, −6.58721246122946685593871398548, −6.40956157443857190008851270885, −6.15685404959915365928806921668, −6.14337161470366828069746186692, −6.01834705771960148191738975580, −5.40100522328205667248069046929, −5.33468050562385146857043572243, −5.12847151162666513140143244543, −4.75886360451060189161550512102, −4.72877425985352543065887719277, −4.48140398582663885661055091326, −3.93076586080313024974586665576, −3.60285602823852269595081708751, −3.55116925225128066560049338097, −3.52700025763539797166124761016, −3.48904186335533102719937067109, −2.80517733237047729473536497888, −2.46767941547755616025477578686, −2.34394391002449516652780453906, −1.82085486482291096182027190950, −1.35725628447687316168321350547, −1.23765865277920913297382048458, −1.16043957127199207986154101104, −0.57219697366140985311191121789, 0.57219697366140985311191121789, 1.16043957127199207986154101104, 1.23765865277920913297382048458, 1.35725628447687316168321350547, 1.82085486482291096182027190950, 2.34394391002449516652780453906, 2.46767941547755616025477578686, 2.80517733237047729473536497888, 3.48904186335533102719937067109, 3.52700025763539797166124761016, 3.55116925225128066560049338097, 3.60285602823852269595081708751, 3.93076586080313024974586665576, 4.48140398582663885661055091326, 4.72877425985352543065887719277, 4.75886360451060189161550512102, 5.12847151162666513140143244543, 5.33468050562385146857043572243, 5.40100522328205667248069046929, 6.01834705771960148191738975580, 6.14337161470366828069746186692, 6.15685404959915365928806921668, 6.40956157443857190008851270885, 6.58721246122946685593871398548, 6.97193588989761362503316452261

Graph of the $Z$-function along the critical line