Properties

Label 4-1350e2-1.1-c1e2-0-21
Degree $4$
Conductor $1822500$
Sign $1$
Analytic cond. $116.204$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 6·11-s + 16-s − 4·19-s − 12·29-s − 20·31-s − 12·41-s + 6·44-s − 2·49-s + 6·59-s − 14·61-s − 64-s + 30·71-s + 4·76-s − 16·79-s − 24·89-s + 24·101-s − 4·109-s + 12·116-s + 5·121-s + 20·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.80·11-s + 1/4·16-s − 0.917·19-s − 2.22·29-s − 3.59·31-s − 1.87·41-s + 0.904·44-s − 2/7·49-s + 0.781·59-s − 1.79·61-s − 1/8·64-s + 3.56·71-s + 0.458·76-s − 1.80·79-s − 2.54·89-s + 2.38·101-s − 0.383·109-s + 1.11·116-s + 5/11·121-s + 1.79·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1822500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1822500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1822500\)    =    \(2^{2} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(116.204\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1822500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 167 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.358767197798941468871957599282, −8.969807269776292482679102854866, −8.678601480541626286136654443722, −8.187238228461980480405173279197, −7.75135484508714870051209006322, −7.44610568031542127505266294045, −7.11732366715655303509778126209, −6.55914519094423828045155233596, −5.93172244312131361664149722274, −5.52439635985594017990594264392, −5.14095944070439049398360999604, −5.04250681498774848020633839555, −4.12813381427571540358976871030, −3.74921696363360829586538440219, −3.39469069070105949874617725048, −2.64802911163887194713286263259, −2.00805247241882622671154375703, −1.64119946306213127505685108561, 0, 0, 1.64119946306213127505685108561, 2.00805247241882622671154375703, 2.64802911163887194713286263259, 3.39469069070105949874617725048, 3.74921696363360829586538440219, 4.12813381427571540358976871030, 5.04250681498774848020633839555, 5.14095944070439049398360999604, 5.52439635985594017990594264392, 5.93172244312131361664149722274, 6.55914519094423828045155233596, 7.11732366715655303509778126209, 7.44610568031542127505266294045, 7.75135484508714870051209006322, 8.187238228461980480405173279197, 8.678601480541626286136654443722, 8.969807269776292482679102854866, 9.358767197798941468871957599282

Graph of the $Z$-function along the critical line