| L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1 − 1.73i)5-s + (0.5 − 2.59i)7-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)11-s + 3·13-s + 1.99·15-s + (−4 + 6.92i)17-s + (−0.5 − 0.866i)19-s + (2 + 1.73i)21-s + (−4 − 6.92i)23-s + (0.500 − 0.866i)25-s + 0.999·27-s − 4·29-s + (−1.5 + 2.59i)31-s + ⋯ |
| L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.447 − 0.774i)5-s + (0.188 − 0.981i)7-s + (−0.166 − 0.288i)9-s + (0.301 − 0.522i)11-s + 0.832·13-s + 0.516·15-s + (−0.970 + 1.68i)17-s + (−0.114 − 0.198i)19-s + (0.436 + 0.377i)21-s + (−0.834 − 1.44i)23-s + (0.100 − 0.173i)25-s + 0.192·27-s − 0.742·29-s + (−0.269 + 0.466i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7515009427\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7515009427\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
| good | 5 | \( 1 + (1 + 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3T + 13T^{2} \) |
| 17 | \( 1 + (4 - 6.92i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4 + 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (1.5 - 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + 11T + 43T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6 - 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.5 + 11.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10T + 71T^{2} \) |
| 73 | \( 1 + (-5.5 + 9.52i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.5 - 2.59i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.172113166519054841487368663910, −8.469005548880659302236151477702, −7.994014533155815016459072780417, −6.62028916833309897743837259004, −6.10914929837380516529081993067, −4.81954978578194148802730692113, −4.17040798576159788791799970000, −3.54563688394244776575358547776, −1.67720739595859911487281981000, −0.31936383816843430848460453449,
1.69118349892583740843031587380, 2.73082522977049613844581953526, 3.78811621341316322020898049339, 5.00460755222413266570912439760, 5.85306347965969343388117094085, 6.72353054450456291288257180882, 7.37274939796707780284354138365, 8.184621746800605907009932520743, 9.150596973173432665257755759531, 9.774090370852958948738259721967