Properties

Label 2-1344-24.11-c1-0-21
Degree $2$
Conductor $1344$
Sign $-i$
Analytic cond. $10.7318$
Root an. cond. $3.27595$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 1.22i)3-s + 2.44·5-s + i·7-s + 2.99i·9-s + 2.44i·13-s + (2.99 + 2.99i)15-s + 6i·17-s − 7.34·19-s + (−1.22 + 1.22i)21-s + 0.999·25-s + (−3.67 + 3.67i)27-s + 4.89·29-s − 8i·31-s + 2.44i·35-s + 4.89i·37-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)3-s + 1.09·5-s + 0.377i·7-s + 0.999i·9-s + 0.679i·13-s + (0.774 + 0.774i)15-s + 1.45i·17-s − 1.68·19-s + (−0.267 + 0.267i)21-s + 0.199·25-s + (−0.707 + 0.707i)27-s + 0.909·29-s − 1.43i·31-s + 0.414i·35-s + 0.805i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-i$
Analytic conductor: \(10.7318\)
Root analytic conductor: \(3.27595\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (1247, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.417065390\)
\(L(\frac12)\) \(\approx\) \(2.417065390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.22 - 1.22i)T \)
7 \( 1 - iT \)
good5 \( 1 - 2.44T + 5T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 2.44iT - 13T^{2} \)
17 \( 1 - 6iT - 17T^{2} \)
19 \( 1 + 7.34T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 4.89T + 29T^{2} \)
31 \( 1 + 8iT - 31T^{2} \)
37 \( 1 - 4.89iT - 37T^{2} \)
41 \( 1 + 6iT - 41T^{2} \)
43 \( 1 - 4.89T + 43T^{2} \)
47 \( 1 - 12T + 47T^{2} \)
53 \( 1 - 9.79T + 53T^{2} \)
59 \( 1 - 2.44iT - 59T^{2} \)
61 \( 1 + 2.44iT - 61T^{2} \)
67 \( 1 + 9.79T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 8iT - 79T^{2} \)
83 \( 1 - 7.34iT - 83T^{2} \)
89 \( 1 + 18iT - 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.877953973342625506241594554782, −8.797638896315111526209825952057, −8.684696303006516167227922963639, −7.50340461179847692891810876849, −6.25179397249292919492592124636, −5.79666651294002561796875171556, −4.54599955040675263023024731308, −3.88942931954054971697813552874, −2.46220368988041504503211971374, −1.90677320669866998330697495805, 0.905407052361729299583494746936, 2.19896121790962692168036762269, 2.89860909753782316651298128304, 4.18308477610880288272149520959, 5.34552400088163909847411344338, 6.26730928262159633670714046618, 6.95053400429764121749539875574, 7.75944359984751048321146973417, 8.716043919284907837689313091008, 9.243260921690765642757303188088

Graph of the $Z$-function along the critical line