L(s) = 1 | + (1.22 + 1.22i)3-s + 2.44·5-s + i·7-s + 2.99i·9-s + 2.44i·13-s + (2.99 + 2.99i)15-s + 6i·17-s − 7.34·19-s + (−1.22 + 1.22i)21-s + 0.999·25-s + (−3.67 + 3.67i)27-s + 4.89·29-s − 8i·31-s + 2.44i·35-s + 4.89i·37-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + 1.09·5-s + 0.377i·7-s + 0.999i·9-s + 0.679i·13-s + (0.774 + 0.774i)15-s + 1.45i·17-s − 1.68·19-s + (−0.267 + 0.267i)21-s + 0.199·25-s + (−0.707 + 0.707i)27-s + 0.909·29-s − 1.43i·31-s + 0.414i·35-s + 0.805i·37-s + ⋯ |
Λ(s)=(=(1344s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(1344s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
1344
= 26⋅3⋅7
|
Sign: |
−i
|
Analytic conductor: |
10.7318 |
Root analytic conductor: |
3.27595 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1344(1247,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1344, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
2.417065390 |
L(21) |
≈ |
2.417065390 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.22−1.22i)T |
| 7 | 1−iT |
good | 5 | 1−2.44T+5T2 |
| 11 | 1−11T2 |
| 13 | 1−2.44iT−13T2 |
| 17 | 1−6iT−17T2 |
| 19 | 1+7.34T+19T2 |
| 23 | 1+23T2 |
| 29 | 1−4.89T+29T2 |
| 31 | 1+8iT−31T2 |
| 37 | 1−4.89iT−37T2 |
| 41 | 1+6iT−41T2 |
| 43 | 1−4.89T+43T2 |
| 47 | 1−12T+47T2 |
| 53 | 1−9.79T+53T2 |
| 59 | 1−2.44iT−59T2 |
| 61 | 1+2.44iT−61T2 |
| 67 | 1+9.79T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+8iT−79T2 |
| 83 | 1−7.34iT−83T2 |
| 89 | 1+18iT−89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.877953973342625506241594554782, −8.797638896315111526209825952057, −8.684696303006516167227922963639, −7.50340461179847692891810876849, −6.25179397249292919492592124636, −5.79666651294002561796875171556, −4.54599955040675263023024731308, −3.88942931954054971697813552874, −2.46220368988041504503211971374, −1.90677320669866998330697495805,
0.905407052361729299583494746936, 2.19896121790962692168036762269, 2.89860909753782316651298128304, 4.18308477610880288272149520959, 5.34552400088163909847411344338, 6.26730928262159633670714046618, 6.95053400429764121749539875574, 7.75944359984751048321146973417, 8.716043919284907837689313091008, 9.243260921690765642757303188088