Properties

Degree $2$
Conductor $1323$
Sign $-0.388 - 0.921i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 + 2.13i)2-s + (−2.02 − 3.51i)4-s − 2.59·5-s + 5.05·8-s + (3.19 − 5.52i)10-s − 4.51·11-s + (0.5 − 0.866i)13-s + (−2.16 + 3.74i)16-s + (0.472 − 0.819i)17-s + (−2.02 − 3.51i)19-s + (5.25 + 9.10i)20-s + (5.55 − 9.61i)22-s + 0.273·23-s + 1.72·25-s + (1.23 + 2.13i)26-s + ⋯
L(s)  = 1  + (−0.869 + 1.50i)2-s + (−1.01 − 1.75i)4-s − 1.15·5-s + 1.78·8-s + (1.00 − 1.74i)10-s − 1.36·11-s + (0.138 − 0.240i)13-s + (−0.540 + 0.936i)16-s + (0.114 − 0.198i)17-s + (−0.465 − 0.805i)19-s + (1.17 + 2.03i)20-s + (1.18 − 2.05i)22-s + 0.0569·23-s + 0.345·25-s + (0.241 + 0.417i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.388 - 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-0.388 - 0.921i$
Motivic weight: \(1\)
Character: $\chi_{1323} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ -0.388 - 0.921i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4750163994\)
\(L(\frac12)\) \(\approx\) \(0.4750163994\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (1.23 - 2.13i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + 2.59T + 5T^{2} \)
11 \( 1 + 4.51T + 11T^{2} \)
13 \( 1 + (-0.5 + 0.866i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-0.472 + 0.819i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.02 + 3.51i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 - 0.273T + 23T^{2} \)
29 \( 1 + (-1.23 - 2.13i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-1.16 - 2.01i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.890 + 1.54i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-3.20 + 5.54i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-5.21 - 9.03i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-6.08 + 10.5i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (3.13 - 5.43i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.36 - 2.36i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (1.13 - 1.96i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-7.90 - 13.6i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 3.27T + 71T^{2} \)
73 \( 1 + (0.753 - 1.30i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.35 - 12.7i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-0.472 - 0.819i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-7.17 - 12.4i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (5.74 + 9.95i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.624195166157102691219144166236, −8.633702448768682665607583601830, −8.243287361141036072655291100617, −7.40056619496888941206540224428, −7.03992504395277884258401914365, −5.85669547831551875935625633431, −5.12673145133918021779399322459, −4.18749640783575758825557304325, −2.76401802381129087944607339259, −0.64197793722663956859630046809, 0.48234140602606020994439297457, 1.99415505762733069542259324745, 3.01022195203214727651648329254, 3.85624823435101183952641076334, 4.67038054700404674091273163295, 6.05476359209257732361962146642, 7.56095936100572915157595766154, 7.946147872800205258204570206044, 8.628974628577996208052880778050, 9.548065054802384281895162376553

Graph of the $Z$-function along the critical line