Properties

Label 4-1323e2-1.1-c1e2-0-21
Degree $4$
Conductor $1750329$
Sign $1$
Analytic cond. $111.602$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 4·13-s − 3·16-s − 10·19-s − 7·25-s − 10·31-s − 14·37-s − 8·43-s + 4·52-s − 16·61-s + 7·64-s + 28·67-s + 8·73-s + 10·76-s + 16·79-s + 8·97-s + 7·100-s − 10·103-s − 14·109-s − 19·121-s + 10·124-s + 127-s + 131-s + 137-s + 139-s + 14·148-s + 149-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.10·13-s − 3/4·16-s − 2.29·19-s − 7/5·25-s − 1.79·31-s − 2.30·37-s − 1.21·43-s + 0.554·52-s − 2.04·61-s + 7/8·64-s + 3.42·67-s + 0.936·73-s + 1.14·76-s + 1.80·79-s + 0.812·97-s + 7/10·100-s − 0.985·103-s − 1.34·109-s − 1.72·121-s + 0.898·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.15·148-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1750329 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1750329 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1750329\)    =    \(3^{6} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(111.602\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1750329,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 43 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 115 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 103 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.229471242417547405326178888526, −9.150601326935250268842732010899, −8.687424163269057293029812961513, −8.247548082818164878249800608539, −7.82087867699404347933620975173, −7.50745657439264564636621318103, −6.77934111258128056454303642378, −6.64049181973731317540338752503, −6.28900794618881628796059323236, −5.46304339025497881985208712235, −5.12004614668373612663990118261, −4.92881054200784352642078274256, −4.14683737870221036945801116423, −3.84416613660774468741132232479, −3.48172689855521382668246180831, −2.44202828862067332005023082242, −2.15760110786234079539525541640, −1.64011161567023595614245826782, 0, 0, 1.64011161567023595614245826782, 2.15760110786234079539525541640, 2.44202828862067332005023082242, 3.48172689855521382668246180831, 3.84416613660774468741132232479, 4.14683737870221036945801116423, 4.92881054200784352642078274256, 5.12004614668373612663990118261, 5.46304339025497881985208712235, 6.28900794618881628796059323236, 6.64049181973731317540338752503, 6.77934111258128056454303642378, 7.50745657439264564636621318103, 7.82087867699404347933620975173, 8.247548082818164878249800608539, 8.687424163269057293029812961513, 9.150601326935250268842732010899, 9.229471242417547405326178888526

Graph of the $Z$-function along the critical line