Properties

Label 2-1305-29.28-c1-0-34
Degree $2$
Conductor $1305$
Sign $-0.153 + 0.988i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.732i·2-s + 1.46·4-s + 5-s − 4.08·7-s − 2.53i·8-s − 0.732i·10-s + 2.45i·11-s − 0.393·13-s + 2.99i·14-s + 1.07·16-s − 2.58i·17-s − 7.38i·19-s + 1.46·20-s + 1.79·22-s + 8.05·23-s + ⋯
L(s)  = 1  − 0.517i·2-s + 0.731·4-s + 0.447·5-s − 1.54·7-s − 0.896i·8-s − 0.231i·10-s + 0.740i·11-s − 0.109·13-s + 0.799i·14-s + 0.267·16-s − 0.628i·17-s − 1.69i·19-s + 0.327·20-s + 0.383·22-s + 1.67·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.153 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.153 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-0.153 + 0.988i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (811, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -0.153 + 0.988i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.719985435\)
\(L(\frac12)\) \(\approx\) \(1.719985435\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
29 \( 1 + (-0.825 + 5.32i)T \)
good2 \( 1 + 0.732iT - 2T^{2} \)
7 \( 1 + 4.08T + 7T^{2} \)
11 \( 1 - 2.45iT - 11T^{2} \)
13 \( 1 + 0.393T + 13T^{2} \)
17 \( 1 + 2.58iT - 17T^{2} \)
19 \( 1 + 7.38iT - 19T^{2} \)
23 \( 1 - 8.05T + 23T^{2} \)
31 \( 1 + 6.86iT - 31T^{2} \)
37 \( 1 + 8.71iT - 37T^{2} \)
41 \( 1 - 11.3iT - 41T^{2} \)
43 \( 1 + 7.75iT - 43T^{2} \)
47 \( 1 + 2.06iT - 47T^{2} \)
53 \( 1 + 3.02T + 53T^{2} \)
59 \( 1 - 8.03T + 59T^{2} \)
61 \( 1 - 11.5iT - 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 - 16.4T + 71T^{2} \)
73 \( 1 + 3.80iT - 73T^{2} \)
79 \( 1 - 7.38iT - 79T^{2} \)
83 \( 1 + 8.43T + 83T^{2} \)
89 \( 1 - 6.04iT - 89T^{2} \)
97 \( 1 - 10.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.518649817223412378513928579767, −9.082264060389849909019464430446, −7.47901574242176415544377797289, −6.89014073842796200127741007420, −6.33443463475071133525070083813, −5.24434405197204878582601416943, −4.03575300019802805463445373810, −2.85036291793179715963463685917, −2.42706393255930914624360446320, −0.70768930642772335663164903114, 1.47709398145327119030735771265, 2.95675921724181644586067679350, 3.46179980494234207438018244444, 5.15112651467284266367453777806, 5.96459481464839014727902435072, 6.52861698888283191122571772798, 7.15570090125386358277303086338, 8.264126946983208700689253540416, 8.948407311346068778315179193818, 9.957401537626835680406315964724

Graph of the $Z$-function along the critical line