Properties

Label 2-13-13.3-c7-0-2
Degree $2$
Conductor $13$
Sign $-0.181 - 0.983i$
Analytic cond. $4.06100$
Root an. cond. $2.01519$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (5.05 + 8.75i)2-s + (35.2 + 60.9i)3-s + (12.8 − 22.2i)4-s − 163.·5-s + (−356. + 616. i)6-s + (−123. + 213. i)7-s + 1.55e3·8-s + (−1.38e3 + 2.39e3i)9-s + (−829. − 1.43e3i)10-s + (−1.01e3 − 1.75e3i)11-s + 1.80e3·12-s + (7.17e3 − 3.35e3i)13-s − 2.49e3·14-s + (−5.77e3 − 9.99e3i)15-s + (6.21e3 + 1.07e4i)16-s + (1.74e4 − 3.02e4i)17-s + ⋯
L(s)  = 1  + (0.446 + 0.774i)2-s + (0.752 + 1.30i)3-s + (0.100 − 0.173i)4-s − 0.586·5-s + (−0.672 + 1.16i)6-s + (−0.136 + 0.235i)7-s + 1.07·8-s + (−0.633 + 1.09i)9-s + (−0.262 − 0.454i)10-s + (−0.230 − 0.398i)11-s + 0.302·12-s + (0.905 − 0.423i)13-s − 0.243·14-s + (−0.441 − 0.764i)15-s + (0.379 + 0.657i)16-s + (0.863 − 1.49i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.181 - 0.983i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.181 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.181 - 0.983i$
Analytic conductor: \(4.06100\)
Root analytic conductor: \(2.01519\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :7/2),\ -0.181 - 0.983i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.41708 + 1.70238i\)
\(L(\frac12)\) \(\approx\) \(1.41708 + 1.70238i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-7.17e3 + 3.35e3i)T \)
good2 \( 1 + (-5.05 - 8.75i)T + (-64 + 110. i)T^{2} \)
3 \( 1 + (-35.2 - 60.9i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + 163.T + 7.81e4T^{2} \)
7 \( 1 + (123. - 213. i)T + (-4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 + (1.01e3 + 1.75e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
17 \( 1 + (-1.74e4 + 3.02e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (1.07e4 - 1.86e4i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (-3.51e4 - 6.08e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (1.03e5 + 1.78e5i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + 3.04e5T + 2.75e10T^{2} \)
37 \( 1 + (-6.13e4 - 1.06e5i)T + (-4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 + (1.17e5 + 2.03e5i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (4.56e4 - 7.91e4i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 + 9.67e5T + 5.06e11T^{2} \)
53 \( 1 - 2.87e4T + 1.17e12T^{2} \)
59 \( 1 + (3.82e4 - 6.62e4i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (-2.96e5 + 5.13e5i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-9.15e5 - 1.58e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (-1.41e6 + 2.45e6i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 - 1.74e6T + 1.10e13T^{2} \)
79 \( 1 - 3.23e6T + 1.92e13T^{2} \)
83 \( 1 + 4.95e6T + 2.71e13T^{2} \)
89 \( 1 + (-2.54e6 - 4.40e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (7.53e6 - 1.30e7i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.88082337363426179486743876919, −16.44299601134327849059698787080, −15.71351870571114994353155392453, −14.87840111964350827899828698580, −13.63944559615453532333879442114, −11.13207005895577564586018885969, −9.602052074659595272574537113657, −7.83761993297950637049855201632, −5.45076638986298220502432034079, −3.65368900467429554289915085310, 1.73011837252822498245577459623, 3.59607283448706292910255703133, 7.07336017669794773128925861744, 8.332288172435738107106387343369, 10.97422961153423946574092356201, 12.53026337896966934259529855100, 13.14336529871116976012551457263, 14.63324112819501566213269137165, 16.60991029552748832556878498012, 18.42347940652428924436752056817

Graph of the $Z$-function along the critical line