Properties

Label 2-13-13.7-c6-0-4
Degree $2$
Conductor $13$
Sign $-0.916 + 0.400i$
Analytic cond. $2.99070$
Root an. cond. $1.72936$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.77 + 1.27i)2-s + (4.54 − 7.86i)3-s + (−34.2 + 19.7i)4-s + (−109. − 109. i)5-s + (−11.6 + 43.3i)6-s + (−504. − 135. i)7-s + (361. − 361. i)8-s + (323. + 559. i)9-s + (663. + 383. i)10-s + (246. + 919. i)11-s + 359. i·12-s + (300. − 2.17e3i)13-s + 2.58e3·14-s + (−1.36e3 + 364. i)15-s + (1.54 − 2.68i)16-s + (−5.34e3 + 3.08e3i)17-s + ⋯
L(s)  = 1  + (−0.596 + 0.159i)2-s + (0.168 − 0.291i)3-s + (−0.535 + 0.309i)4-s + (−0.877 − 0.877i)5-s + (−0.0538 + 0.200i)6-s + (−1.47 − 0.394i)7-s + (0.706 − 0.706i)8-s + (0.443 + 0.767i)9-s + (0.663 + 0.383i)10-s + (0.185 + 0.691i)11-s + 0.208i·12-s + (0.136 − 0.990i)13-s + 0.940·14-s + (−0.403 + 0.108i)15-s + (0.000378 − 0.000655i)16-s + (−1.08 + 0.628i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 + 0.400i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.916 + 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.916 + 0.400i$
Analytic conductor: \(2.99070\)
Root analytic conductor: \(1.72936\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :3),\ -0.916 + 0.400i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.0449915 - 0.215211i\)
\(L(\frac12)\) \(\approx\) \(0.0449915 - 0.215211i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-300. + 2.17e3i)T \)
good2 \( 1 + (4.77 - 1.27i)T + (55.4 - 32i)T^{2} \)
3 \( 1 + (-4.54 + 7.86i)T + (-364.5 - 631. i)T^{2} \)
5 \( 1 + (109. + 109. i)T + 1.56e4iT^{2} \)
7 \( 1 + (504. + 135. i)T + (1.01e5 + 5.88e4i)T^{2} \)
11 \( 1 + (-246. - 919. i)T + (-1.53e6 + 8.85e5i)T^{2} \)
17 \( 1 + (5.34e3 - 3.08e3i)T + (1.20e7 - 2.09e7i)T^{2} \)
19 \( 1 + (-1.06e3 + 3.95e3i)T + (-4.07e7 - 2.35e7i)T^{2} \)
23 \( 1 + (9.99e3 + 5.76e3i)T + (7.40e7 + 1.28e8i)T^{2} \)
29 \( 1 + (186. - 322. i)T + (-2.97e8 - 5.15e8i)T^{2} \)
31 \( 1 + (1.08e4 + 1.08e4i)T + 8.87e8iT^{2} \)
37 \( 1 + (2.23e4 + 8.34e4i)T + (-2.22e9 + 1.28e9i)T^{2} \)
41 \( 1 + (-1.61e3 + 432. i)T + (4.11e9 - 2.37e9i)T^{2} \)
43 \( 1 + (8.83e4 - 5.10e4i)T + (3.16e9 - 5.47e9i)T^{2} \)
47 \( 1 + (2.76e4 - 2.76e4i)T - 1.07e10iT^{2} \)
53 \( 1 - 2.39e5T + 2.21e10T^{2} \)
59 \( 1 + (-1.20e5 - 3.22e4i)T + (3.65e10 + 2.10e10i)T^{2} \)
61 \( 1 + (-3.82e4 - 6.61e4i)T + (-2.57e10 + 4.46e10i)T^{2} \)
67 \( 1 + (3.54e5 - 9.50e4i)T + (7.83e10 - 4.52e10i)T^{2} \)
71 \( 1 + (1.11e5 - 4.17e5i)T + (-1.10e11 - 6.40e10i)T^{2} \)
73 \( 1 + (-3.43e5 + 3.43e5i)T - 1.51e11iT^{2} \)
79 \( 1 + 5.59e5T + 2.43e11T^{2} \)
83 \( 1 + (5.51e4 + 5.51e4i)T + 3.26e11iT^{2} \)
89 \( 1 + (1.89e5 + 7.08e5i)T + (-4.30e11 + 2.48e11i)T^{2} \)
97 \( 1 + (-3.28e5 + 1.22e6i)T + (-7.21e11 - 4.16e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.97698837918069913144722514796, −16.56107991459155638963349349351, −15.75513084031562921180013702884, −13.21102654030892646228921867011, −12.67900780824347180402812752001, −10.15256339774363322707231863426, −8.631495046570037573677865082408, −7.29313888701180730309696394275, −4.18693168959237015533867176305, −0.20234623542748597957589959277, 3.66209977729891911120260313639, 6.67356704279308506767378270564, 8.904646485132924383134576642328, 10.03988782084036896156845757175, 11.70398011910301577808959017700, 13.66983811116506301684615556211, 15.20183171961515563360711867539, 16.32073279641383157136361579313, 18.32072516093902756586779196758, 18.99002630745060446217596343305

Graph of the $Z$-function along the critical line