Properties

Label 2-6e4-1.1-c3-0-12
Degree $2$
Conductor $1296$
Sign $1$
Analytic cond. $76.4664$
Root an. cond. $8.74451$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.35·5-s − 8.35·7-s + 29.0·11-s + 36.7·13-s + 28.4·17-s − 73.7·19-s − 30.5·23-s − 37.4·25-s − 184.·29-s + 190.·31-s + 78.2·35-s + 160.·37-s − 209.·41-s − 116.·43-s − 281.·47-s − 273.·49-s − 397.·53-s − 272.·55-s + 378.·59-s − 297.·61-s − 344.·65-s + 827.·67-s + 729.·71-s + 1.10e3·73-s − 242.·77-s + 1.06e3·79-s + 590.·83-s + ⋯
L(s)  = 1  − 0.836·5-s − 0.451·7-s + 0.796·11-s + 0.784·13-s + 0.405·17-s − 0.890·19-s − 0.276·23-s − 0.299·25-s − 1.18·29-s + 1.10·31-s + 0.377·35-s + 0.713·37-s − 0.798·41-s − 0.414·43-s − 0.873·47-s − 0.796·49-s − 1.03·53-s − 0.667·55-s + 0.834·59-s − 0.624·61-s − 0.656·65-s + 1.50·67-s + 1.21·71-s + 1.77·73-s − 0.359·77-s + 1.51·79-s + 0.780·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(76.4664\)
Root analytic conductor: \(8.74451\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.469839414\)
\(L(\frac12)\) \(\approx\) \(1.469839414\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 9.35T + 125T^{2} \)
7 \( 1 + 8.35T + 343T^{2} \)
11 \( 1 - 29.0T + 1.33e3T^{2} \)
13 \( 1 - 36.7T + 2.19e3T^{2} \)
17 \( 1 - 28.4T + 4.91e3T^{2} \)
19 \( 1 + 73.7T + 6.85e3T^{2} \)
23 \( 1 + 30.5T + 1.21e4T^{2} \)
29 \( 1 + 184.T + 2.43e4T^{2} \)
31 \( 1 - 190.T + 2.97e4T^{2} \)
37 \( 1 - 160.T + 5.06e4T^{2} \)
41 \( 1 + 209.T + 6.89e4T^{2} \)
43 \( 1 + 116.T + 7.95e4T^{2} \)
47 \( 1 + 281.T + 1.03e5T^{2} \)
53 \( 1 + 397.T + 1.48e5T^{2} \)
59 \( 1 - 378.T + 2.05e5T^{2} \)
61 \( 1 + 297.T + 2.26e5T^{2} \)
67 \( 1 - 827.T + 3.00e5T^{2} \)
71 \( 1 - 729.T + 3.57e5T^{2} \)
73 \( 1 - 1.10e3T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 - 590.T + 5.71e5T^{2} \)
89 \( 1 - 227.T + 7.04e5T^{2} \)
97 \( 1 - 1.28e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.317816590807052843336545492320, −8.318800915735394409790268293055, −7.84999297854889725790760364258, −6.65027191037327028262207768562, −6.21536485216236749903271858315, −4.95296031590613117317430747382, −3.89372656435590185404461643122, −3.41567102481517557139408833453, −1.92838023100971863350204187665, −0.60916267696053042714447830025, 0.60916267696053042714447830025, 1.92838023100971863350204187665, 3.41567102481517557139408833453, 3.89372656435590185404461643122, 4.95296031590613117317430747382, 6.21536485216236749903271858315, 6.65027191037327028262207768562, 7.84999297854889725790760364258, 8.318800915735394409790268293055, 9.317816590807052843336545492320

Graph of the $Z$-function along the critical line