Properties

Label 8-6e16-1.1-c1e4-0-5
Degree $8$
Conductor $2.821\times 10^{12}$
Sign $1$
Analytic cond. $11469.0$
Root an. cond. $3.21692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s + 14·25-s − 16·37-s + 10·49-s − 28·61-s + 16·73-s + 4·97-s + 16·109-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 42·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 1.10·13-s + 14/5·25-s − 2.63·37-s + 10/7·49-s − 3.58·61-s + 1.87·73-s + 0.406·97-s + 1.53·109-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(11469.0\)
Root analytic conductor: \(3.21692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{16} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.838877859\)
\(L(\frac12)\) \(\approx\) \(3.838877859\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 7 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 17 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 53 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 55 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 77 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 67 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 91 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 53 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 67 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 139 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 166 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.94610025566856022645148648061, −6.72017047940997203420020949378, −6.48134687865389440413011881851, −6.23462554012693887878561223955, −5.93239024354581407464664249190, −5.89956498832381126244273500963, −5.70383470913063902782134990027, −5.16948438981566945141074046682, −5.14709397107151442089396502369, −4.76587075501338825507301666772, −4.74545984483450127452584457741, −4.62604249616783951873412764168, −4.08912966173216204126720949169, −3.66808566745617160278130961505, −3.66541692634906408004630710595, −3.62078361246027658319344766399, −2.98399805629499848359794861927, −2.89775493735339319923820077677, −2.74081711422851606293951784361, −2.29036642415981658647050751702, −1.81001087703213092257857322970, −1.56518974006172941652756626440, −1.39537144777438267960550015576, −0.75292952346528297811631648082, −0.50023974819583373243254670989, 0.50023974819583373243254670989, 0.75292952346528297811631648082, 1.39537144777438267960550015576, 1.56518974006172941652756626440, 1.81001087703213092257857322970, 2.29036642415981658647050751702, 2.74081711422851606293951784361, 2.89775493735339319923820077677, 2.98399805629499848359794861927, 3.62078361246027658319344766399, 3.66541692634906408004630710595, 3.66808566745617160278130961505, 4.08912966173216204126720949169, 4.62604249616783951873412764168, 4.74545984483450127452584457741, 4.76587075501338825507301666772, 5.14709397107151442089396502369, 5.16948438981566945141074046682, 5.70383470913063902782134990027, 5.89956498832381126244273500963, 5.93239024354581407464664249190, 6.23462554012693887878561223955, 6.48134687865389440413011881851, 6.72017047940997203420020949378, 6.94610025566856022645148648061

Graph of the $Z$-function along the critical line