Properties

Label 8-1280e4-1.1-c1e4-0-8
Degree $8$
Conductor $2.684\times 10^{12}$
Sign $1$
Analytic cond. $10913.1$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·9-s + 8·17-s − 2·25-s − 8·41-s − 12·49-s + 24·73-s − 6·81-s − 40·89-s + 8·97-s + 8·113-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·153-s + 157-s + 163-s + 167-s + 44·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 4/3·9-s + 1.94·17-s − 2/5·25-s − 1.24·41-s − 1.71·49-s + 2.80·73-s − 2/3·81-s − 4.23·89-s + 0.812·97-s + 0.752·113-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.58·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(10913.1\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.066944588\)
\(L(\frac12)\) \(\approx\) \(2.066944588\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
7$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 126 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.86137816883771863988117360982, −6.73319427278279329214541701374, −6.60320709852443554873695040843, −6.08849272471504480749388027829, −5.93614132116438903279411387559, −5.91061639709618980634821449642, −5.55378169370215349425242754569, −5.34084132463577479895481249631, −5.21642104113449935245563080241, −4.91337796002406823701912059557, −4.88981382968949787566903416861, −4.22352158976485560969083953699, −4.12360070308573337447723781820, −4.05980074880724542032358770266, −3.49110802942974164431421866743, −3.40064548928288007145308682572, −3.09633989284459406934619731709, −2.86425756751636377550836488887, −2.79979616547071034496730591237, −2.29428942092811512260598712903, −1.84917373363336474364803851102, −1.65305633989897442053963579908, −1.36067334862514455836791140180, −0.71979849040965480667717737248, −0.37258392630966781462872934426, 0.37258392630966781462872934426, 0.71979849040965480667717737248, 1.36067334862514455836791140180, 1.65305633989897442053963579908, 1.84917373363336474364803851102, 2.29428942092811512260598712903, 2.79979616547071034496730591237, 2.86425756751636377550836488887, 3.09633989284459406934619731709, 3.40064548928288007145308682572, 3.49110802942974164431421866743, 4.05980074880724542032358770266, 4.12360070308573337447723781820, 4.22352158976485560969083953699, 4.88981382968949787566903416861, 4.91337796002406823701912059557, 5.21642104113449935245563080241, 5.34084132463577479895481249631, 5.55378169370215349425242754569, 5.91061639709618980634821449642, 5.93614132116438903279411387559, 6.08849272471504480749388027829, 6.60320709852443554873695040843, 6.73319427278279329214541701374, 6.86137816883771863988117360982

Graph of the $Z$-function along the critical line