Properties

Label 4-1280e2-1.1-c1e2-0-66
Degree $4$
Conductor $1638400$
Sign $1$
Analytic cond. $104.465$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·9-s − 12·17-s − 12·23-s − 25-s − 8·31-s − 12·41-s − 12·47-s − 2·49-s − 8·63-s + 24·71-s − 4·73-s + 16·79-s − 5·81-s + 12·89-s + 4·97-s − 28·103-s − 12·113-s + 48·119-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + ⋯
L(s)  = 1  − 1.51·7-s + 2/3·9-s − 2.91·17-s − 2.50·23-s − 1/5·25-s − 1.43·31-s − 1.87·41-s − 1.75·47-s − 2/7·49-s − 1.00·63-s + 2.84·71-s − 0.468·73-s + 1.80·79-s − 5/9·81-s + 1.27·89-s + 0.406·97-s − 2.75·103-s − 1.12·113-s + 4.40·119-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1638400\)    =    \(2^{16} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(104.465\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1638400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.539561210487403574675283344717, −9.157322000026837505816158343106, −8.720780437434469962417611550224, −8.230129938830794240392666925692, −7.947734946671294662176519651630, −7.33782374831349734915177782979, −6.76688402776421694590616068181, −6.55439813991020394176486152580, −6.38643347295196248226107769990, −5.89685145504248507853114839610, −5.00990142224555417387955616255, −4.92788450814285464970946220317, −4.08751456399959515893395846470, −3.79555062207260394056854598536, −3.48532229815160737435781499688, −2.61865819129094450462582354274, −2.05326687888168253012791912667, −1.71445765527751321897892714700, 0, 0, 1.71445765527751321897892714700, 2.05326687888168253012791912667, 2.61865819129094450462582354274, 3.48532229815160737435781499688, 3.79555062207260394056854598536, 4.08751456399959515893395846470, 4.92788450814285464970946220317, 5.00990142224555417387955616255, 5.89685145504248507853114839610, 6.38643347295196248226107769990, 6.55439813991020394176486152580, 6.76688402776421694590616068181, 7.33782374831349734915177782979, 7.947734946671294662176519651630, 8.230129938830794240392666925692, 8.720780437434469962417611550224, 9.157322000026837505816158343106, 9.539561210487403574675283344717

Graph of the $Z$-function along the critical line