# Properties

 Degree $2$ Conductor $128$ Sign $0.0172 - 0.999i$ Motivic weight $4$ Primitive yes Self-dual no Analytic rank $0$

# Learn more about

## Dirichlet series

 L(s)  = 1 + (11.5 + 11.5i)3-s + (14.6 + 14.6i)5-s + 24.0·7-s + 184. i·9-s + (61.7 − 61.7i)11-s + (37.5 − 37.5i)13-s + 336. i·15-s + 96.8·17-s + (−156. − 156. i)19-s + (276. + 276. i)21-s − 959.·23-s − 198. i·25-s + (−1.19e3 + 1.19e3i)27-s + (350. − 350. i)29-s + 237. i·31-s + ⋯
 L(s)  = 1 + (1.28 + 1.28i)3-s + (0.584 + 0.584i)5-s + 0.490·7-s + 2.27i·9-s + (0.510 − 0.510i)11-s + (0.222 − 0.222i)13-s + 1.49i·15-s + 0.335·17-s + (−0.434 − 0.434i)19-s + (0.627 + 0.627i)21-s − 1.81·23-s − 0.317i·25-s + (−1.63 + 1.63i)27-s + (0.416 − 0.416i)29-s + 0.247i·31-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0172 - 0.999i)\, \overline{\Lambda}(5-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.0172 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$128$$    =    $$2^{7}$$ Sign: $0.0172 - 0.999i$ Motivic weight: $$4$$ Character: $\chi_{128} (31, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 128,\ (\ :2),\ 0.0172 - 0.999i)$$

## Particular Values

 $$L(\frac{5}{2})$$ $$\approx$$ $$2.21371 + 2.17582i$$ $$L(\frac12)$$ $$\approx$$ $$2.21371 + 2.17582i$$ $$L(3)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
good3 $$1 + (-11.5 - 11.5i)T + 81iT^{2}$$
5 $$1 + (-14.6 - 14.6i)T + 625iT^{2}$$
7 $$1 - 24.0T + 2.40e3T^{2}$$
11 $$1 + (-61.7 + 61.7i)T - 1.46e4iT^{2}$$
13 $$1 + (-37.5 + 37.5i)T - 2.85e4iT^{2}$$
17 $$1 - 96.8T + 8.35e4T^{2}$$
19 $$1 + (156. + 156. i)T + 1.30e5iT^{2}$$
23 $$1 + 959.T + 2.79e5T^{2}$$
29 $$1 + (-350. + 350. i)T - 7.07e5iT^{2}$$
31 $$1 - 237. iT - 9.23e5T^{2}$$
37 $$1 + (-560. - 560. i)T + 1.87e6iT^{2}$$
41 $$1 - 1.80e3iT - 2.82e6T^{2}$$
43 $$1 + (-206. + 206. i)T - 3.41e6iT^{2}$$
47 $$1 + 1.59e3iT - 4.87e6T^{2}$$
53 $$1 + (-2.23e3 - 2.23e3i)T + 7.89e6iT^{2}$$
59 $$1 + (-2.35e3 + 2.35e3i)T - 1.21e7iT^{2}$$
61 $$1 + (-4.44e3 + 4.44e3i)T - 1.38e7iT^{2}$$
67 $$1 + (3.99e3 + 3.99e3i)T + 2.01e7iT^{2}$$
71 $$1 + 4.92e3T + 2.54e7T^{2}$$
73 $$1 - 2.65e3iT - 2.83e7T^{2}$$
79 $$1 + 8.79e3iT - 3.89e7T^{2}$$
83 $$1 + (228. + 228. i)T + 4.74e7iT^{2}$$
89 $$1 + 1.05e4iT - 6.27e7T^{2}$$
97 $$1 - 1.10e4T + 8.85e7T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−13.37148700784001980653462510814, −11.59164650233085484895202005175, −10.42987487672394987129211687606, −9.854060817289011471244123166168, −8.719580292578451076237577872347, −7.929031009130063665809162964930, −6.14511011209659226627670899086, −4.59990317503054867646383229008, −3.44136663753688172213832381879, −2.20385623016150239100261330432, 1.31475066414417438437216437719, 2.20873140985842180013465386818, 3.97408837517738363830008522475, 5.89185299690616742342414840192, 7.12976103136789684375350530217, 8.150593476440699335408676188333, 8.932263534056536750438736173912, 9.951161698333174907166188838777, 11.80538734026734819496650009734, 12.58925558982638737977843323544