Properties

Label 2-2e7-1.1-c3-0-2
Degree $2$
Conductor $128$
Sign $1$
Analytic cond. $7.55224$
Root an. cond. $2.74813$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.92·3-s + 15.8·5-s − 17.8·7-s − 2.71·9-s + 52.9·11-s + 8.43·13-s − 78.1·15-s + 129.·17-s + 50.4·19-s + 87.9·21-s + 128.·23-s + 126.·25-s + 146.·27-s + 111.·29-s − 302.·31-s − 260.·33-s − 283.·35-s − 182.·37-s − 41.5·39-s − 94.5·41-s + 184.·43-s − 43.0·45-s + 296.·47-s − 24.1·49-s − 636.·51-s − 102.·53-s + 839.·55-s + ⋯
L(s)  = 1  − 0.948·3-s + 1.41·5-s − 0.964·7-s − 0.100·9-s + 1.45·11-s + 0.179·13-s − 1.34·15-s + 1.84·17-s + 0.609·19-s + 0.914·21-s + 1.16·23-s + 1.01·25-s + 1.04·27-s + 0.712·29-s − 1.75·31-s − 1.37·33-s − 1.36·35-s − 0.813·37-s − 0.170·39-s − 0.360·41-s + 0.654·43-s − 0.142·45-s + 0.921·47-s − 0.0704·49-s − 1.74·51-s − 0.266·53-s + 2.05·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $1$
Analytic conductor: \(7.55224\)
Root analytic conductor: \(2.74813\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.469546360\)
\(L(\frac12)\) \(\approx\) \(1.469546360\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 4.92T + 27T^{2} \)
5 \( 1 - 15.8T + 125T^{2} \)
7 \( 1 + 17.8T + 343T^{2} \)
11 \( 1 - 52.9T + 1.33e3T^{2} \)
13 \( 1 - 8.43T + 2.19e3T^{2} \)
17 \( 1 - 129.T + 4.91e3T^{2} \)
19 \( 1 - 50.4T + 6.85e3T^{2} \)
23 \( 1 - 128.T + 1.21e4T^{2} \)
29 \( 1 - 111.T + 2.43e4T^{2} \)
31 \( 1 + 302.T + 2.97e4T^{2} \)
37 \( 1 + 182.T + 5.06e4T^{2} \)
41 \( 1 + 94.5T + 6.89e4T^{2} \)
43 \( 1 - 184.T + 7.95e4T^{2} \)
47 \( 1 - 296.T + 1.03e5T^{2} \)
53 \( 1 + 102.T + 1.48e5T^{2} \)
59 \( 1 + 93.3T + 2.05e5T^{2} \)
61 \( 1 + 338.T + 2.26e5T^{2} \)
67 \( 1 - 489.T + 3.00e5T^{2} \)
71 \( 1 + 86.9T + 3.57e5T^{2} \)
73 \( 1 + 154.T + 3.89e5T^{2} \)
79 \( 1 + 449.T + 4.93e5T^{2} \)
83 \( 1 - 383.T + 5.71e5T^{2} \)
89 \( 1 + 517.T + 7.04e5T^{2} \)
97 \( 1 - 1.73e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71294547861133488243939133042, −11.95218233620490209762578951165, −10.73529812629860444352909986815, −9.738122581831264796196262602920, −9.043305270717892583752902907929, −6.97979601724114239466939299649, −6.04956831398730683416393005564, −5.36196371718961953678413956835, −3.28791328557975573283912374552, −1.18789024419627928853200199750, 1.18789024419627928853200199750, 3.28791328557975573283912374552, 5.36196371718961953678413956835, 6.04956831398730683416393005564, 6.97979601724114239466939299649, 9.043305270717892583752902907929, 9.738122581831264796196262602920, 10.73529812629860444352909986815, 11.95218233620490209762578951165, 12.71294547861133488243939133042

Graph of the $Z$-function along the critical line