L(s) = 1 | + (1.10 + 2.67i)3-s + (2.95 − 7.13i)5-s + (4.18 − 4.18i)7-s + (0.437 − 0.437i)9-s + (−1.42 + 3.44i)11-s + (8.39 + 20.2i)13-s + 22.3·15-s − 1.73i·17-s + (−14.2 + 5.90i)19-s + (15.8 + 6.55i)21-s + (−15.1 − 15.1i)23-s + (−24.5 − 24.5i)25-s + (25.7 + 10.6i)27-s + (−6.74 + 2.79i)29-s − 31.1i·31-s + ⋯ |
L(s) = 1 | + (0.369 + 0.891i)3-s + (0.591 − 1.42i)5-s + (0.597 − 0.597i)7-s + (0.0486 − 0.0486i)9-s + (−0.129 + 0.313i)11-s + (0.646 + 1.55i)13-s + 1.49·15-s − 0.101i·17-s + (−0.749 + 0.310i)19-s + (0.753 + 0.312i)21-s + (−0.658 − 0.658i)23-s + (−0.980 − 0.980i)25-s + (0.952 + 0.394i)27-s + (−0.232 + 0.0962i)29-s − 1.00i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00911i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.00911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.79071 - 0.00816358i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79071 - 0.00816358i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (-1.10 - 2.67i)T + (-6.36 + 6.36i)T^{2} \) |
| 5 | \( 1 + (-2.95 + 7.13i)T + (-17.6 - 17.6i)T^{2} \) |
| 7 | \( 1 + (-4.18 + 4.18i)T - 49iT^{2} \) |
| 11 | \( 1 + (1.42 - 3.44i)T + (-85.5 - 85.5i)T^{2} \) |
| 13 | \( 1 + (-8.39 - 20.2i)T + (-119. + 119. i)T^{2} \) |
| 17 | \( 1 + 1.73iT - 289T^{2} \) |
| 19 | \( 1 + (14.2 - 5.90i)T + (255. - 255. i)T^{2} \) |
| 23 | \( 1 + (15.1 + 15.1i)T + 529iT^{2} \) |
| 29 | \( 1 + (6.74 - 2.79i)T + (594. - 594. i)T^{2} \) |
| 31 | \( 1 + 31.1iT - 961T^{2} \) |
| 37 | \( 1 + (-5.30 + 12.7i)T + (-968. - 968. i)T^{2} \) |
| 41 | \( 1 + (18.5 - 18.5i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + (31.0 - 75.0i)T + (-1.30e3 - 1.30e3i)T^{2} \) |
| 47 | \( 1 - 16.2T + 2.20e3T^{2} \) |
| 53 | \( 1 + (29.0 + 12.0i)T + (1.98e3 + 1.98e3i)T^{2} \) |
| 59 | \( 1 + (34.1 + 14.1i)T + (2.46e3 + 2.46e3i)T^{2} \) |
| 61 | \( 1 + (68.7 - 28.4i)T + (2.63e3 - 2.63e3i)T^{2} \) |
| 67 | \( 1 + (10.5 + 25.3i)T + (-3.17e3 + 3.17e3i)T^{2} \) |
| 71 | \( 1 + (-32.2 + 32.2i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (28.5 - 28.5i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 22.4T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-123. + 51.0i)T + (4.87e3 - 4.87e3i)T^{2} \) |
| 89 | \( 1 + (-61.0 - 61.0i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + 69.9T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.20707780256729278363321460388, −12.15532765516333744592597522709, −10.89691828428841053341250052822, −9.709410235798188573644922229675, −9.081732131611935679936167730053, −8.081151080945638521327478757738, −6.32756758786208874663579396582, −4.68804095083223463270416927718, −4.17480341826786219908315986132, −1.61491796097820291919692198053,
1.96403188754745299606385152216, 3.15981837477322915428545465912, 5.52497170984922195733718335433, 6.58216764925669947320709807249, 7.68755244947260677408669033191, 8.583084752050917865856845277866, 10.27982797416872262813182970330, 10.87994432336108466409393753093, 12.19688659659919658027086371427, 13.33424959864729458050132988419