Properties

Label 8-2e28-1.1-c2e4-0-1
Degree $8$
Conductor $268435456$
Sign $1$
Analytic cond. $147.972$
Root an. cond. $1.86755$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s + 12·9-s + 24·13-s − 8·17-s + 4·25-s − 136·29-s − 40·37-s + 8·41-s − 96·45-s + 100·49-s + 88·53-s − 296·61-s − 192·65-s + 88·73-s + 74·81-s + 64·85-s + 216·89-s − 328·97-s + 24·101-s + 440·109-s − 312·113-s + 288·117-s + 140·121-s + 72·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 8/5·5-s + 4/3·9-s + 1.84·13-s − 0.470·17-s + 4/25·25-s − 4.68·29-s − 1.08·37-s + 8/41·41-s − 2.13·45-s + 2.04·49-s + 1.66·53-s − 4.85·61-s − 2.95·65-s + 1.20·73-s + 0.913·81-s + 0.752·85-s + 2.42·89-s − 3.38·97-s + 0.237·101-s + 4.03·109-s − 2.76·113-s + 2.46·117-s + 1.15·121-s + 0.575·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28}\)
Sign: $1$
Analytic conductor: \(147.972\)
Root analytic conductor: \(1.86755\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.071190043\)
\(L(\frac12)\) \(\approx\) \(1.071190043\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_4\times C_2$ \( 1 - 4 p T^{2} + 70 T^{4} - 4 p^{5} T^{6} + p^{8} T^{8} \)
5$D_{4}$ \( ( 1 + 4 T + 22 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 100 T^{2} + 5254 T^{4} - 100 p^{4} T^{6} + p^{8} T^{8} \)
11$D_4\times C_2$ \( 1 - 140 T^{2} + 5382 T^{4} - 140 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 - 12 T + 342 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 + 4 T + 454 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 780 T^{2} + 402374 T^{4} - 780 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 484 T^{2} + 517894 T^{4} - 484 p^{4} T^{6} + p^{8} T^{8} \)
29$D_{4}$ \( ( 1 + 68 T + 2806 T^{2} + 68 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 126 T^{2} + p^{4} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 20 T + 1270 T^{2} + 20 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 - 4 T + 2854 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 2764 T^{2} + 8710534 T^{4} - 2764 p^{4} T^{6} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 7428 T^{2} + 23258246 T^{4} - 7428 p^{4} T^{6} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 - 44 T + 6070 T^{2} - 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 11020 T^{2} + 52720774 T^{4} - 11020 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 148 T + 11350 T^{2} + 148 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 11980 T^{2} + 75342534 T^{4} - 11980 p^{4} T^{6} + p^{8} T^{8} \)
71$D_4\times C_2$ \( 1 - 18276 T^{2} + 133865606 T^{4} - 18276 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 44 T + 9990 T^{2} - 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 1028 T^{2} + 28324230 T^{4} - 1028 p^{4} T^{6} + p^{8} T^{8} \)
83$D_4\times C_2$ \( 1 - 5452 T^{2} + 97966918 T^{4} - 5452 p^{4} T^{6} + p^{8} T^{8} \)
89$D_{4}$ \( ( 1 - 108 T + 15558 T^{2} - 108 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 164 T + 22342 T^{2} + 164 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.482415242292395898999986522455, −9.134491802445198085943160626560, −9.008809517576601987174247640977, −8.904409043717117786516135233944, −8.465614376984604626953553328724, −7.968288357792941920740897658606, −7.85589822902003476388861024287, −7.44080832153534550443785301186, −7.33208117860013835690844846885, −7.29518255921657874472388963989, −6.72476594789313867635975437160, −6.25578985257200962034051496173, −6.09285948987201867634232653981, −5.64095651069235511338251980481, −5.42796951014303270055757795129, −4.94912889505918606651902993562, −4.36091838568098770719405034547, −4.13114686178600122343947459149, −3.87530572858742689251081683986, −3.53371627007778845925567966444, −3.47819599012845139278189130025, −2.52485474928293717583848819731, −1.71513495582123759050072940933, −1.60492484920060555566738344747, −0.42420625848744924549397251279, 0.42420625848744924549397251279, 1.60492484920060555566738344747, 1.71513495582123759050072940933, 2.52485474928293717583848819731, 3.47819599012845139278189130025, 3.53371627007778845925567966444, 3.87530572858742689251081683986, 4.13114686178600122343947459149, 4.36091838568098770719405034547, 4.94912889505918606651902993562, 5.42796951014303270055757795129, 5.64095651069235511338251980481, 6.09285948987201867634232653981, 6.25578985257200962034051496173, 6.72476594789313867635975437160, 7.29518255921657874472388963989, 7.33208117860013835690844846885, 7.44080832153534550443785301186, 7.85589822902003476388861024287, 7.968288357792941920740897658606, 8.465614376984604626953553328724, 8.904409043717117786516135233944, 9.008809517576601987174247640977, 9.134491802445198085943160626560, 9.482415242292395898999986522455

Graph of the $Z$-function along the critical line