L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s + 0.999·8-s − 3·9-s + 0.999·10-s + 4·11-s + (−3.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s + (1.5 + 2.59i)18-s + (−0.499 − 0.866i)20-s + (−2 − 3.46i)22-s + (2 + 3.46i)23-s + (2 + 3.46i)25-s + (1 + 3.46i)26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.353·8-s − 9-s + 0.316·10-s + 1.20·11-s + (−0.970 − 0.240i)13-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s + (0.353 + 0.612i)18-s + (−0.111 − 0.193i)20-s + (−0.426 − 0.738i)22-s + (0.417 + 0.722i)23-s + (0.400 + 0.692i)25-s + (0.196 + 0.679i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.703 - 0.710i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.703 - 0.710i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9486662364\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9486662364\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 3 | \( 1 + 3T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 - 4T + 11T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 + 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 - 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4 - 6.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (-4 - 6.92i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.5 - 9.52i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.584072725956746237973349572380, −9.242088651756470189714322422692, −8.242106424307843831340100725985, −7.43030305762522662513686648369, −6.62639983009215043486445830464, −5.51120108154346794493574770742, −4.53743838747959346643601269595, −3.32862262084574237466263846843, −2.72606983128633489630764405152, −1.20503749148774732891790408622,
0.50605443589789670863271595371, 2.09923813210027357991416000185, 3.54023507096519843056312207290, 4.59629068514213009223124216308, 5.43322216959255624793171134783, 6.40724720025065079162952937128, 7.02572093811939281490106874204, 8.147632836067489378688335317932, 8.656188529841566323740662880622, 9.351964053554124795378698358521