L(s) = 1 | − 2-s − 5-s + 8-s − 6·9-s + 10-s + 8·11-s − 7·13-s − 16-s + 3·17-s + 6·18-s − 8·22-s + 4·23-s + 5·25-s + 7·26-s + 29-s + 4·31-s − 3·34-s − 3·37-s − 40-s − 9·41-s + 8·43-s + 6·45-s − 4·46-s − 8·47-s − 5·50-s + 9·53-s − 8·55-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.447·5-s + 0.353·8-s − 2·9-s + 0.316·10-s + 2.41·11-s − 1.94·13-s − 1/4·16-s + 0.727·17-s + 1.41·18-s − 1.70·22-s + 0.834·23-s + 25-s + 1.37·26-s + 0.185·29-s + 0.718·31-s − 0.514·34-s − 0.493·37-s − 0.158·40-s − 1.40·41-s + 1.21·43-s + 0.894·45-s − 0.589·46-s − 1.16·47-s − 0.707·50-s + 1.23·53-s − 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1623076 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1623076 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8999676282\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8999676282\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.584072725956746237973349572380, −9.351964053554124795378698358521, −9.242088651756470189714322422692, −8.656188529841566323740662880622, −8.242106424307843831340100725985, −8.147632836067489378688335317932, −7.43030305762522662513686648369, −7.02572093811939281490106874204, −6.62639983009215043486445830464, −6.40724720025065079162952937128, −5.51120108154346794493574770742, −5.43322216959255624793171134783, −4.59629068514213009223124216308, −4.53743838747959346643601269595, −3.54023507096519843056312207290, −3.32862262084574237466263846843, −2.72606983128633489630764405152, −2.09923813210027357991416000185, −1.20503749148774732891790408622, −0.50605443589789670863271595371,
0.50605443589789670863271595371, 1.20503749148774732891790408622, 2.09923813210027357991416000185, 2.72606983128633489630764405152, 3.32862262084574237466263846843, 3.54023507096519843056312207290, 4.53743838747959346643601269595, 4.59629068514213009223124216308, 5.43322216959255624793171134783, 5.51120108154346794493574770742, 6.40724720025065079162952937128, 6.62639983009215043486445830464, 7.02572093811939281490106874204, 7.43030305762522662513686648369, 8.147632836067489378688335317932, 8.242106424307843831340100725985, 8.656188529841566323740662880622, 9.242088651756470189714322422692, 9.351964053554124795378698358521, 9.584072725956746237973349572380