Properties

Label 8-1260e4-1.1-c0e4-0-4
Degree $8$
Conductor $2.520\times 10^{12}$
Sign $1$
Analytic cond. $0.156354$
Root an. cond. $0.792982$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 4·5-s + 9-s − 4·20-s + 10·25-s + 6·29-s + 36-s + 2·41-s − 4·45-s + 49-s − 64-s − 4·89-s + 10·100-s + 4·101-s + 2·109-s + 6·116-s − 4·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 4-s − 4·5-s + 9-s − 4·20-s + 10·25-s + 6·29-s + 36-s + 2·41-s − 4·45-s + 49-s − 64-s − 4·89-s + 10·100-s + 4·101-s + 2·109-s + 6·116-s − 4·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + 149-s + 151-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.156354\)
Root analytic conductor: \(0.792982\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7660550645\)
\(L(\frac12)\) \(\approx\) \(0.7660550645\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_1$ \( ( 1 + T )^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
good11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 - T + T^{2} )^{2} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_2$ \( ( 1 + T + T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.08306263283818787325872646738, −6.86580027711492765219290296501, −6.80200915222145220340710965467, −6.72608306929107193347953499911, −6.52896801410802086717922928816, −6.08966369229074821195465246188, −6.02831129149565488126926598592, −5.52849866737003095186485462603, −5.25932466250393343784622561448, −4.86005201798596134187974432446, −4.65159310679076219922108652710, −4.52957847528257497226065847747, −4.45499199969828857576395630992, −4.24942676342106737749656615011, −4.03295640683285972302453678291, −3.57078485597832804668927800380, −3.52041502107327942795861360787, −3.10502512536619287865005350163, −2.82055832952102812995392234485, −2.70895887295229795491606934733, −2.60121535867422162821335173420, −2.02612074199945558743499952184, −1.18522564287751680934537943335, −1.06996741021812534367689563741, −0.825824073747193117095482650300, 0.825824073747193117095482650300, 1.06996741021812534367689563741, 1.18522564287751680934537943335, 2.02612074199945558743499952184, 2.60121535867422162821335173420, 2.70895887295229795491606934733, 2.82055832952102812995392234485, 3.10502512536619287865005350163, 3.52041502107327942795861360787, 3.57078485597832804668927800380, 4.03295640683285972302453678291, 4.24942676342106737749656615011, 4.45499199969828857576395630992, 4.52957847528257497226065847747, 4.65159310679076219922108652710, 4.86005201798596134187974432446, 5.25932466250393343784622561448, 5.52849866737003095186485462603, 6.02831129149565488126926598592, 6.08966369229074821195465246188, 6.52896801410802086717922928816, 6.72608306929107193347953499911, 6.80200915222145220340710965467, 6.86580027711492765219290296501, 7.08306263283818787325872646738

Graph of the $Z$-function along the critical line