Properties

Label 8-126e4-1.1-c2e4-0-5
Degree $8$
Conductor $252047376$
Sign $1$
Analytic cond. $138.938$
Root an. cond. $1.85290$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 8·7-s + 24·11-s + 12·16-s − 24·23-s + 64·25-s + 32·28-s − 120·29-s − 80·37-s − 128·43-s + 96·44-s + 22·49-s + 216·53-s + 32·64-s + 176·67-s + 120·71-s + 192·77-s + 128·79-s − 96·92-s + 256·100-s + 168·107-s − 8·109-s + 96·112-s + 360·113-s − 480·116-s − 88·121-s + 127-s + ⋯
L(s)  = 1  + 4-s + 8/7·7-s + 2.18·11-s + 3/4·16-s − 1.04·23-s + 2.55·25-s + 8/7·28-s − 4.13·29-s − 2.16·37-s − 2.97·43-s + 2.18·44-s + 0.448·49-s + 4.07·53-s + 1/2·64-s + 2.62·67-s + 1.69·71-s + 2.49·77-s + 1.62·79-s − 1.04·92-s + 2.55·100-s + 1.57·107-s − 0.0733·109-s + 6/7·112-s + 3.18·113-s − 4.13·116-s − 0.727·121-s + 0.00787·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(138.938\)
Root analytic conductor: \(1.85290\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.210841986\)
\(L(\frac12)\) \(\approx\) \(4.210841986\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p T^{2} )^{2} \)
3 \( 1 \)
7$C_2^2$ \( 1 - 8 T + 6 p T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} \)
good5$D_4\times C_2$ \( 1 - 64 T^{2} + 1986 T^{4} - 64 p^{4} T^{6} + p^{8} T^{8} \)
11$D_{4}$ \( ( 1 - 12 T + 260 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 244 T^{2} + 53574 T^{4} - 244 p^{4} T^{6} + p^{8} T^{8} \)
17$C_2^3$ \( 1 + 320 T^{2} + 546 p^{2} T^{4} + 320 p^{4} T^{6} + p^{8} T^{8} \)
19$D_4\times C_2$ \( 1 - 652 T^{2} + 348486 T^{4} - 652 p^{4} T^{6} + p^{8} T^{8} \)
23$D_{4}$ \( ( 1 + 12 T + 932 T^{2} + 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
31$D_4\times C_2$ \( 1 - 1252 T^{2} + 745926 T^{4} - 1252 p^{4} T^{6} + p^{8} T^{8} \)
37$D_{4}$ \( ( 1 + 40 T + 546 T^{2} + 40 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 4960 T^{2} + 11110434 T^{4} - 4960 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 64 T + 2922 T^{2} + 64 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 3940 T^{2} + 5766 p^{2} T^{4} - 3940 p^{4} T^{6} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 - 108 T + 8246 T^{2} - 108 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 4420 T^{2} + 6539622 T^{4} - 4420 p^{4} T^{6} + p^{8} T^{8} \)
61$D_4\times C_2$ \( 1 - 14596 T^{2} + 80934054 T^{4} - 14596 p^{4} T^{6} + p^{8} T^{8} \)
67$D_{4}$ \( ( 1 - 88 T + 10626 T^{2} - 88 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 60 T + 4484 T^{2} - 60 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 13108 T^{2} + 98972646 T^{4} - 13108 p^{4} T^{6} + p^{8} T^{8} \)
79$D_{4}$ \( ( 1 - 64 T + 3138 T^{2} - 64 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 16612 T^{2} + 134415078 T^{4} - 16612 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 8896 T^{2} + 52680354 T^{4} - 8896 p^{4} T^{6} + p^{8} T^{8} \)
97$D_4\times C_2$ \( 1 - 24820 T^{2} + 317127462 T^{4} - 24820 p^{4} T^{6} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.677626717277536076238031986941, −9.095807131029857804267062996500, −9.018985500318887422018445794702, −8.859971293110088272252780814349, −8.496336899267924484592007137846, −8.229454515596870104978422256300, −7.903612847393583452137338853795, −7.43083754234991012902611636781, −7.28407555501163355741561862090, −6.81603207757209924377277095503, −6.73887302093743430002416618475, −6.67375099281273375981940689910, −5.91250392134167883564870894621, −5.83784777941426809633355268342, −5.15380047341106742011838771058, −5.13515569714500388776960448585, −4.90243776562815311854785785491, −3.86027714167018860061238907070, −3.81604870324180334936480392756, −3.77263563162550108011292070486, −3.16177521355316739651267637864, −2.24902481766302355268242120835, −1.92308933130853592037675298565, −1.67046277916240950317221356441, −0.862224439222901504643703981763, 0.862224439222901504643703981763, 1.67046277916240950317221356441, 1.92308933130853592037675298565, 2.24902481766302355268242120835, 3.16177521355316739651267637864, 3.77263563162550108011292070486, 3.81604870324180334936480392756, 3.86027714167018860061238907070, 4.90243776562815311854785785491, 5.13515569714500388776960448585, 5.15380047341106742011838771058, 5.83784777941426809633355268342, 5.91250392134167883564870894621, 6.67375099281273375981940689910, 6.73887302093743430002416618475, 6.81603207757209924377277095503, 7.28407555501163355741561862090, 7.43083754234991012902611636781, 7.903612847393583452137338853795, 8.229454515596870104978422256300, 8.496336899267924484592007137846, 8.859971293110088272252780814349, 9.018985500318887422018445794702, 9.095807131029857804267062996500, 9.677626717277536076238031986941

Graph of the $Z$-function along the critical line