Properties

Label 4-5e6-1.1-c1e2-0-1
Degree $4$
Conductor $15625$
Sign $1$
Analytic cond. $0.996263$
Root an. cond. $0.999064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s − 2·4-s + 3·6-s − 6·7-s + 3·8-s + 2·9-s − 6·11-s + 6·12-s − 3·13-s + 6·14-s + 16-s + 4·17-s − 2·18-s − 5·19-s + 18·21-s + 6·22-s + 2·23-s − 9·24-s + 3·26-s + 6·27-s + 12·28-s − 31-s − 2·32-s + 18·33-s − 4·34-s − 4·36-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s − 4-s + 1.22·6-s − 2.26·7-s + 1.06·8-s + 2/3·9-s − 1.80·11-s + 1.73·12-s − 0.832·13-s + 1.60·14-s + 1/4·16-s + 0.970·17-s − 0.471·18-s − 1.14·19-s + 3.92·21-s + 1.27·22-s + 0.417·23-s − 1.83·24-s + 0.588·26-s + 1.15·27-s + 2.26·28-s − 0.179·31-s − 0.353·32-s + 3.13·33-s − 0.685·34-s − 2/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15625\)    =    \(5^{6}\)
Sign: $1$
Analytic conductor: \(0.996263\)
Root analytic conductor: \(0.999064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 15625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
good2$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
3$D_{4}$ \( 1 + p T + 7 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 3 T + 17 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 4 T + 33 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 5 T + 43 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 2 T + 42 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 6 T + 38 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 + T + 33 T^{2} + p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 7 T + 117 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 15 T + 163 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
61$C_4$ \( 1 + T + 91 T^{2} + p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 21 T + 233 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 + 3 T + 137 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 10 T + 163 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 8 T + 162 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 9 T + 203 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93972281835560793328304327272, −12.77530826107366461194664135181, −12.05382558703418650096099764436, −11.73792435979112215104379094148, −10.86172981070757279343267880448, −10.26038123706751969123599255840, −9.986551135646300424046204636967, −9.939295121411511505824047360314, −8.780613974808470968139799786105, −8.647305319067773250473627408691, −7.72847099897749536043262283778, −6.98778454542719658500051129123, −6.42548266234641240966635633122, −5.83997881754905965570583860943, −5.10791352937727896511830478381, −4.94771465460436105819958449903, −3.59379870547119281719423165809, −2.81326367837647123037569197004, 0, 0, 2.81326367837647123037569197004, 3.59379870547119281719423165809, 4.94771465460436105819958449903, 5.10791352937727896511830478381, 5.83997881754905965570583860943, 6.42548266234641240966635633122, 6.98778454542719658500051129123, 7.72847099897749536043262283778, 8.647305319067773250473627408691, 8.780613974808470968139799786105, 9.939295121411511505824047360314, 9.986551135646300424046204636967, 10.26038123706751969123599255840, 10.86172981070757279343267880448, 11.73792435979112215104379094148, 12.05382558703418650096099764436, 12.77530826107366461194664135181, 12.93972281835560793328304327272

Graph of the $Z$-function along the critical line