Properties

Label 4-124e2-1.1-c3e2-0-1
Degree $4$
Conductor $15376$
Sign $1$
Analytic cond. $53.5273$
Root an. cond. $2.70485$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s + 15·5-s − 29·7-s + 27·9-s + 51·11-s − 53·13-s + 75·15-s − 51·17-s + 145·19-s − 145·21-s + 216·23-s + 125·25-s + 280·27-s − 396·29-s − 124·31-s + 255·33-s − 435·35-s + 55·37-s − 265·39-s − 39·41-s + 217·43-s + 405·45-s + 1.00e3·47-s + 343·49-s − 255·51-s − 237·53-s + 765·55-s + ⋯
L(s)  = 1  + 0.962·3-s + 1.34·5-s − 1.56·7-s + 9-s + 1.39·11-s − 1.13·13-s + 1.29·15-s − 0.727·17-s + 1.75·19-s − 1.50·21-s + 1.95·23-s + 25-s + 1.99·27-s − 2.53·29-s − 0.718·31-s + 1.34·33-s − 2.10·35-s + 0.244·37-s − 1.08·39-s − 0.148·41-s + 0.769·43-s + 1.34·45-s + 3.12·47-s + 49-s − 0.700·51-s − 0.614·53-s + 1.87·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15376 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15376\)    =    \(2^{4} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(53.5273\)
Root analytic conductor: \(2.70485\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15376,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.684377606\)
\(L(\frac12)\) \(\approx\) \(3.684377606\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
31$C_2$ \( 1 + 4 p T + p^{3} T^{2} \)
good3$C_2^2$ \( 1 - 5 T - 2 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 3 p T + 4 p^{2} T^{2} - 3 p^{4} T^{3} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 29 T + 498 T^{2} + 29 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 51 T + 1270 T^{2} - 51 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 + 53 T + 612 T^{2} + 53 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 3 p T - 8 p^{2} T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 145 T + 14166 T^{2} - 145 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 108 T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 198 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 55 T - 47628 T^{2} - 55 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2^2$ \( 1 + 39 T - 67400 T^{2} + 39 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 217 T - 32418 T^{2} - 217 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2$ \( ( 1 - 504 T + p^{3} T^{2} )^{2} \)
53$C_2^2$ \( 1 + 237 T - 92708 T^{2} + 237 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 597 T + 151030 T^{2} - 597 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 466 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 749 T + 260238 T^{2} + 749 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 - 321 T - 254870 T^{2} - 321 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 793 T + 239832 T^{2} - 793 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 1217 T + 988050 T^{2} + 1217 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 555 T - 263762 T^{2} - 555 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 378 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 1070 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07801116080491758500047915576, −12.91925158582011081544174509236, −12.42509503778786845359081924434, −11.78178699995287012246224750745, −10.97287805649269812241432841812, −10.42007009906316648039681392183, −9.767280083210063945462366233794, −9.307572713288341011608608350999, −9.167954829501575427924128677101, −8.946467009436853455538719705570, −7.37952036965690991038176824485, −7.29284962641833792884670510295, −6.72347216269254547419069962059, −5.96745485608797165473502764129, −5.37361308200593026674738909726, −4.44695695231254433285938555412, −3.51017479665169200658415147616, −2.94564943221072461232430167602, −2.13232973208578404616792345410, −1.02691126080557645004569121374, 1.02691126080557645004569121374, 2.13232973208578404616792345410, 2.94564943221072461232430167602, 3.51017479665169200658415147616, 4.44695695231254433285938555412, 5.37361308200593026674738909726, 5.96745485608797165473502764129, 6.72347216269254547419069962059, 7.29284962641833792884670510295, 7.37952036965690991038176824485, 8.946467009436853455538719705570, 9.167954829501575427924128677101, 9.307572713288341011608608350999, 9.767280083210063945462366233794, 10.42007009906316648039681392183, 10.97287805649269812241432841812, 11.78178699995287012246224750745, 12.42509503778786845359081924434, 12.91925158582011081544174509236, 13.07801116080491758500047915576

Graph of the $Z$-function along the critical line