Properties

Label 2-124-31.17-c2-0-3
Degree $2$
Conductor $124$
Sign $-0.0259 + 0.999i$
Analytic cond. $3.37875$
Root an. cond. $1.83813$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 − 1.18i)3-s + (2.72 − 4.71i)5-s + (−0.568 + 5.40i)7-s + (−0.615 − 5.85i)9-s + (−8.24 − 18.5i)11-s + (0.300 − 1.41i)13-s + (−9.14 + 2.97i)15-s + (8.32 − 18.6i)17-s + (9.86 − 2.09i)19-s + (7.13 − 6.42i)21-s + (21.5 + 29.6i)23-s + (−2.33 − 4.04i)25-s + (−15.4 + 21.2i)27-s + (−33.4 − 10.8i)29-s + (−16.7 + 26.1i)31-s + ⋯
L(s)  = 1  + (−0.437 − 0.393i)3-s + (0.544 − 0.943i)5-s + (−0.0811 + 0.772i)7-s + (−0.0683 − 0.650i)9-s + (−0.749 − 1.68i)11-s + (0.0230 − 0.108i)13-s + (−0.609 + 0.198i)15-s + (0.489 − 1.09i)17-s + (0.519 − 0.110i)19-s + (0.339 − 0.305i)21-s + (0.935 + 1.28i)23-s + (−0.0934 − 0.161i)25-s + (−0.571 + 0.787i)27-s + (−1.15 − 0.375i)29-s + (−0.539 + 0.842i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0259 + 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0259 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124\)    =    \(2^{2} \cdot 31\)
Sign: $-0.0259 + 0.999i$
Analytic conductor: \(3.37875\)
Root analytic conductor: \(1.83813\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{124} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 124,\ (\ :1),\ -0.0259 + 0.999i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.819525 - 0.841076i\)
\(L(\frac12)\) \(\approx\) \(0.819525 - 0.841076i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
31 \( 1 + (16.7 - 26.1i)T \)
good3 \( 1 + (1.31 + 1.18i)T + (0.940 + 8.95i)T^{2} \)
5 \( 1 + (-2.72 + 4.71i)T + (-12.5 - 21.6i)T^{2} \)
7 \( 1 + (0.568 - 5.40i)T + (-47.9 - 10.1i)T^{2} \)
11 \( 1 + (8.24 + 18.5i)T + (-80.9 + 89.9i)T^{2} \)
13 \( 1 + (-0.300 + 1.41i)T + (-154. - 68.7i)T^{2} \)
17 \( 1 + (-8.32 + 18.6i)T + (-193. - 214. i)T^{2} \)
19 \( 1 + (-9.86 + 2.09i)T + (329. - 146. i)T^{2} \)
23 \( 1 + (-21.5 - 29.6i)T + (-163. + 503. i)T^{2} \)
29 \( 1 + (33.4 + 10.8i)T + (680. + 494. i)T^{2} \)
37 \( 1 + (-34.1 + 19.7i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-37.9 - 42.1i)T + (-175. + 1.67e3i)T^{2} \)
43 \( 1 + (1.99 + 9.37i)T + (-1.68e3 + 752. i)T^{2} \)
47 \( 1 + (-1.15 - 3.56i)T + (-1.78e3 + 1.29e3i)T^{2} \)
53 \( 1 + (-65.8 + 6.92i)T + (2.74e3 - 584. i)T^{2} \)
59 \( 1 + (-15.1 + 16.8i)T + (-363. - 3.46e3i)T^{2} \)
61 \( 1 - 60.4iT - 3.72e3T^{2} \)
67 \( 1 + (31.6 - 54.7i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + (-1.20 - 11.4i)T + (-4.93e3 + 1.04e3i)T^{2} \)
73 \( 1 + (31.1 + 69.9i)T + (-3.56e3 + 3.96e3i)T^{2} \)
79 \( 1 + (-31.2 + 70.0i)T + (-4.17e3 - 4.63e3i)T^{2} \)
83 \( 1 + (-90.5 + 81.5i)T + (720. - 6.85e3i)T^{2} \)
89 \( 1 + (42.3 - 58.2i)T + (-2.44e3 - 7.53e3i)T^{2} \)
97 \( 1 + (103. + 74.8i)T + (2.90e3 + 8.94e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00273012521093833419446970500, −11.88865902698806379576655535043, −11.13741476672212899013972688445, −9.432396709214557502213347306901, −8.877840033677333171611037858224, −7.45372528454789964255015278140, −5.74115311759670617883857552637, −5.43800622312135194621366304606, −3.11560246130513401270547825073, −0.903643387179288126444070522808, 2.31860820732049968437442511077, 4.22195286023687504587961603587, 5.50976728023360790822800467222, 6.90088695795429384055320518983, 7.78135079530791290495188962694, 9.661682267284373188708503113947, 10.46335407652896427490735018936, 10.91961965070652895017431637090, 12.51091259276586067661907549650, 13.40195516072970956104612320453

Graph of the $Z$-function along the critical line