Properties

Label 8-1232e4-1.1-c1e4-0-1
Degree $8$
Conductor $2.304\times 10^{12}$
Sign $1$
Analytic cond. $9365.93$
Root an. cond. $3.13649$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·9-s − 8·11-s − 16·23-s + 4·25-s − 16·37-s − 14·49-s − 16·53-s + 48·67-s − 32·71-s + 30·81-s − 64·99-s + 24·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 24·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 8/3·9-s − 2.41·11-s − 3.33·23-s + 4/5·25-s − 2.63·37-s − 2·49-s − 2.19·53-s + 5.86·67-s − 3.79·71-s + 10/3·81-s − 6.43·99-s + 2.25·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 7^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(9365.93\)
Root analytic conductor: \(3.13649\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 7^{4} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1387950910\)
\(L(\frac12)\) \(\approx\) \(0.1387950910\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 12 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 60 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 68 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 116 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 162 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.88318775903522271829812548419, −6.80965300056167292998699194698, −6.76612360278980203045233818831, −6.23408767164125756187837618587, −6.00630590992215105568389779806, −5.88215485265376661954309589454, −5.67682839751901155424779844417, −5.22240350698829095250257634884, −5.09340614129438693617138393357, −4.87359054721853402831687773341, −4.84860549579251025626369382622, −4.33349365851407419642772930446, −4.18133568967525758006925552893, −4.14747976697602489594439922433, −3.71034496391760758659681411813, −3.26772768895654717494045835404, −3.20590131121305948714281592966, −3.13307023314842390052845085469, −2.35681549853866938015419789656, −2.18962633727294920515719389228, −1.88793306061726811368663177046, −1.86039105631635865065620628667, −1.38160236323605464931800724487, −0.880392108668189233234294255987, −0.080205774171880955124001131914, 0.080205774171880955124001131914, 0.880392108668189233234294255987, 1.38160236323605464931800724487, 1.86039105631635865065620628667, 1.88793306061726811368663177046, 2.18962633727294920515719389228, 2.35681549853866938015419789656, 3.13307023314842390052845085469, 3.20590131121305948714281592966, 3.26772768895654717494045835404, 3.71034496391760758659681411813, 4.14747976697602489594439922433, 4.18133568967525758006925552893, 4.33349365851407419642772930446, 4.84860549579251025626369382622, 4.87359054721853402831687773341, 5.09340614129438693617138393357, 5.22240350698829095250257634884, 5.67682839751901155424779844417, 5.88215485265376661954309589454, 6.00630590992215105568389779806, 6.23408767164125756187837618587, 6.76612360278980203045233818831, 6.80965300056167292998699194698, 6.88318775903522271829812548419

Graph of the $Z$-function along the critical line