Properties

Label 6-1232e3-1.1-c1e3-0-1
Degree $6$
Conductor $1869959168$
Sign $-1$
Analytic cond. $952.058$
Root an. cond. $3.13649$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 3·7-s − 2·9-s − 3·11-s − 6·13-s − 15-s − 2·17-s − 4·19-s + 3·21-s − 9·23-s − 8·25-s + 3·27-s + 6·29-s − 7·31-s + 3·33-s − 3·35-s + 3·37-s + 6·39-s − 2·41-s − 2·45-s − 16·47-s + 6·49-s + 2·51-s − 6·53-s − 3·55-s + 4·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.13·7-s − 2/3·9-s − 0.904·11-s − 1.66·13-s − 0.258·15-s − 0.485·17-s − 0.917·19-s + 0.654·21-s − 1.87·23-s − 8/5·25-s + 0.577·27-s + 1.11·29-s − 1.25·31-s + 0.522·33-s − 0.507·35-s + 0.493·37-s + 0.960·39-s − 0.312·41-s − 0.298·45-s − 2.33·47-s + 6/7·49-s + 0.280·51-s − 0.824·53-s − 0.404·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 7^{3} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(952.058\)
Root analytic conductor: \(3.13649\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{12} \cdot 7^{3} \cdot 11^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7$C_1$ \( ( 1 + T )^{3} \)
11$C_1$ \( ( 1 + T )^{3} \)
good3$S_4\times C_2$ \( 1 + T + p T^{2} + 2 T^{3} + p^{2} T^{4} + p^{2} T^{5} + p^{3} T^{6} \) 3.3.b_d_c
5$S_4\times C_2$ \( 1 - T + 9 T^{2} - 6 T^{3} + 9 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \) 3.5.ab_j_ag
13$S_4\times C_2$ \( 1 + 6 T + 35 T^{2} + 124 T^{3} + 35 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.13.g_bj_eu
17$S_4\times C_2$ \( 1 + 2 T + 3 T^{2} - 60 T^{3} + 3 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.17.c_d_aci
19$S_4\times C_2$ \( 1 + 4 T + 41 T^{2} + 96 T^{3} + 41 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \) 3.19.e_bp_ds
23$S_4\times C_2$ \( 1 + 9 T + 53 T^{2} + 206 T^{3} + 53 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \) 3.23.j_cb_hy
29$S_4\times C_2$ \( 1 - 6 T + 35 T^{2} - 164 T^{3} + 35 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.29.ag_bj_agi
31$S_4\times C_2$ \( 1 + 7 T + 97 T^{2} + 406 T^{3} + 97 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \) 3.31.h_dt_pq
37$S_4\times C_2$ \( 1 - 3 T + 71 T^{2} - 2 p T^{3} + 71 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \) 3.37.ad_ct_acw
41$S_4\times C_2$ \( 1 + 2 T - 5 T^{2} - 348 T^{3} - 5 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.41.c_af_ank
43$S_4\times C_2$ \( 1 + 65 T^{2} + 64 T^{3} + 65 p T^{4} + p^{3} T^{6} \) 3.43.a_cn_cm
47$S_4\times C_2$ \( 1 + 16 T + 201 T^{2} + 1536 T^{3} + 201 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \) 3.47.q_ht_chc
53$S_4\times C_2$ \( 1 + 6 T + 107 T^{2} + 452 T^{3} + 107 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.53.g_ed_rk
59$S_4\times C_2$ \( 1 + 15 T + 195 T^{2} + 1558 T^{3} + 195 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \) 3.59.p_hn_chy
61$S_4\times C_2$ \( 1 - 9 T^{2} - 808 T^{3} - 9 p T^{4} + p^{3} T^{6} \) 3.61.a_aj_abfc
67$S_4\times C_2$ \( 1 - 9 T + 117 T^{2} - 1222 T^{3} + 117 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \) 3.67.aj_en_abva
71$S_4\times C_2$ \( 1 + 15 T + 185 T^{2} + 1346 T^{3} + 185 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \) 3.71.p_hd_bzu
73$S_4\times C_2$ \( 1 + 26 T + 419 T^{2} + 4212 T^{3} + 419 p T^{4} + 26 p^{2} T^{5} + p^{3} T^{6} \) 3.73.ba_qd_gga
79$S_4\times C_2$ \( 1 + 2 T + 189 T^{2} + 188 T^{3} + 189 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.79.c_hh_hg
83$S_4\times C_2$ \( 1 + 6 T + 245 T^{2} + 964 T^{3} + 245 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.83.g_jl_blc
89$S_4\times C_2$ \( 1 - T + 115 T^{2} + 186 T^{3} + 115 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \) 3.89.ab_el_he
97$S_4\times C_2$ \( 1 + 41 T + 839 T^{2} + 10350 T^{3} + 839 p T^{4} + 41 p^{2} T^{5} + p^{3} T^{6} \) 3.97.bp_bgh_pic
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.320293235843839080979190998159, −8.737157524256351990717202688025, −8.343370751268794108510541498036, −8.267762065733110817106155065186, −7.897384860816542967392216514898, −7.87998066652821176460307796061, −7.18833575564830426839478036701, −7.16768037581756925167141811816, −6.72905795232243039201167932119, −6.58258673214190856142068528835, −6.09697677755765064698819873427, −5.89509649744003777659670106804, −5.82365509113599846190231723769, −5.33289558828902477452143967226, −5.27201962001146015901299075804, −4.60589748729596186412430845101, −4.49974913778059892117622075202, −4.03230455605509430165836704690, −3.97595656838871349472999057649, −3.07643636142947723321277634439, −2.90386512222548928668199798542, −2.85701940881975948177983525705, −2.24293463866612926046449195478, −1.76718589569726992088844392675, −1.59324165734509157696209295500, 0, 0, 0, 1.59324165734509157696209295500, 1.76718589569726992088844392675, 2.24293463866612926046449195478, 2.85701940881975948177983525705, 2.90386512222548928668199798542, 3.07643636142947723321277634439, 3.97595656838871349472999057649, 4.03230455605509430165836704690, 4.49974913778059892117622075202, 4.60589748729596186412430845101, 5.27201962001146015901299075804, 5.33289558828902477452143967226, 5.82365509113599846190231723769, 5.89509649744003777659670106804, 6.09697677755765064698819873427, 6.58258673214190856142068528835, 6.72905795232243039201167932119, 7.16768037581756925167141811816, 7.18833575564830426839478036701, 7.87998066652821176460307796061, 7.897384860816542967392216514898, 8.267762065733110817106155065186, 8.343370751268794108510541498036, 8.737157524256351990717202688025, 9.320293235843839080979190998159

Graph of the $Z$-function along the critical line