Properties

Label 4-35e4-1.1-c3e2-0-11
Degree $4$
Conductor $1500625$
Sign $1$
Analytic cond. $5224.01$
Root an. cond. $8.50160$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 10·3-s − 2·4-s − 20·6-s + 21·9-s + 66·11-s − 20·12-s + 10·13-s − 20·16-s + 70·17-s − 42·18-s − 140·19-s − 132·22-s + 16·23-s − 20·26-s − 310·27-s − 258·29-s + 20·31-s + 200·32-s + 660·33-s − 140·34-s − 42·36-s − 328·37-s + 280·38-s + 100·39-s − 300·41-s + 116·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.92·3-s − 1/4·4-s − 1.36·6-s + 7/9·9-s + 1.80·11-s − 0.481·12-s + 0.213·13-s − 0.312·16-s + 0.998·17-s − 0.549·18-s − 1.69·19-s − 1.27·22-s + 0.145·23-s − 0.150·26-s − 2.20·27-s − 1.65·29-s + 0.115·31-s + 1.10·32-s + 3.48·33-s − 0.706·34-s − 0.194·36-s − 1.45·37-s + 1.19·38-s + 0.410·39-s − 1.14·41-s + 0.411·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1500625\)    =    \(5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5224.01\)
Root analytic conductor: \(8.50160\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1500625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2$D_{4}$ \( 1 + p T + 3 p T^{2} + p^{4} T^{3} + p^{6} T^{4} \)
3$C_2$ \( ( 1 - 5 T + p^{3} T^{2} )^{2} \)
11$D_{4}$ \( 1 - 6 p T + 325 p T^{2} - 6 p^{4} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 10 T + 19 T^{2} - 10 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 70 T + 6651 T^{2} - 70 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 140 T + 14218 T^{2} + 140 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 16 T + 15774 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 258 T + 40075 T^{2} + 258 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 20 T + 20082 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 328 T + 106906 T^{2} + 328 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 300 T + 50342 T^{2} + 300 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 116 T + 160794 T^{2} - 116 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 30 T + 190271 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 540 T + 212254 T^{2} + 540 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 380 T + 429258 T^{2} + 380 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1080 T + 705962 T^{2} + 1080 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 468 T + 554906 T^{2} + 468 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 1056 T + 949550 T^{2} + 1056 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 860 T + 522934 T^{2} + 860 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 2 p T - 339825 T^{2} - 2 p^{4} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 40 T + 703974 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 240 T - 164062 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 1630 T + 2133171 T^{2} - 1630 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.107499168023484510921021889426, −8.834237215133840698549053526186, −8.504531010062988127425775425487, −8.142042474502259274595092274504, −7.66955832734114619233374440625, −7.39514770475560625027988294770, −6.74919057079143354117624882227, −6.25918735833701851852579826473, −5.97346810698913580959532861312, −5.42529955971033518814233429518, −4.48859740726931126982775771467, −4.35758087967338754250243978188, −3.56991308006902941876339759207, −3.38859028566650024129169531642, −2.98657849416034593933676402480, −2.20745992656434724673477754447, −1.70382570504049603897189393871, −1.36689597058315738715764868285, 0, 0, 1.36689597058315738715764868285, 1.70382570504049603897189393871, 2.20745992656434724673477754447, 2.98657849416034593933676402480, 3.38859028566650024129169531642, 3.56991308006902941876339759207, 4.35758087967338754250243978188, 4.48859740726931126982775771467, 5.42529955971033518814233429518, 5.97346810698913580959532861312, 6.25918735833701851852579826473, 6.74919057079143354117624882227, 7.39514770475560625027988294770, 7.66955832734114619233374440625, 8.142042474502259274595092274504, 8.504531010062988127425775425487, 8.834237215133840698549053526186, 9.107499168023484510921021889426

Graph of the $Z$-function along the critical line