Properties

Label 8-35e8-1.1-c1e4-0-0
Degree $8$
Conductor $2.252\times 10^{12}$
Sign $1$
Analytic cond. $9154.88$
Root an. cond. $3.12756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 3·9-s + 2·11-s − 3·16-s − 12·19-s − 2·29-s − 3·36-s − 4·41-s − 2·44-s − 16·59-s − 12·61-s + 3·64-s + 32·71-s + 12·76-s + 18·79-s − 7·81-s + 12·89-s + 6·99-s + 32·101-s − 46·109-s + 2·116-s − 33·121-s + 127-s + 131-s + 137-s + 139-s − 9·144-s + ⋯
L(s)  = 1  − 1/2·4-s + 9-s + 0.603·11-s − 3/4·16-s − 2.75·19-s − 0.371·29-s − 1/2·36-s − 0.624·41-s − 0.301·44-s − 2.08·59-s − 1.53·61-s + 3/8·64-s + 3.79·71-s + 1.37·76-s + 2.02·79-s − 7/9·81-s + 1.27·89-s + 0.603·99-s + 3.18·101-s − 4.40·109-s + 0.185·116-s − 3·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3/4·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(9154.88\)
Root analytic conductor: \(3.12756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4645705428\)
\(L(\frac12)\) \(\approx\) \(0.4645705428\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2$D_4\times C_2$ \( 1 + T^{2} + p^{2} T^{4} + p^{2} T^{6} + p^{4} T^{8} \)
3$D_4\times C_2$ \( 1 - p T^{2} + 16 T^{4} - p^{3} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 31 T^{2} + 472 T^{4} - 31 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 47 T^{2} + 1024 T^{4} - 47 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 6 T + 30 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 56 T^{2} + 1774 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + T + 20 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 2 T + 66 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 88 T^{2} + 3934 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 99 T^{2} + 5912 T^{4} - 99 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 176 T^{2} + 13294 T^{4} - 176 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
61$D_{4}$ \( ( 1 + 6 T - 22 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 124 T^{2} + 11734 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
73$D_4\times C_2$ \( 1 - 124 T^{2} + 10150 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 9 T + 174 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 6 T + 170 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 135 T^{2} + 14768 T^{4} - 135 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.09566593755943933531611469710, −6.62565912602620124035112007357, −6.41902946282955143987110423168, −6.33564363000852839777055050728, −6.18577323589488734932400121700, −6.03189454618918634418722357521, −5.69265867587008291929648008770, −5.14546886745897441810584416304, −5.02734117768853056709916644152, −4.91832821629773030387593433401, −4.77744983512535875085703793078, −4.40994731801527051968359674453, −4.21199391834556853024353880586, −3.84456070130817693611343974002, −3.77930030276753349828525289941, −3.68620816984602138141416592199, −3.28254681563838282624400359252, −2.67720231338740483210153844531, −2.61575380362978192051842167014, −2.26029920126402067189007420165, −1.97136371300973585458459343513, −1.60962828694916059929954737449, −1.40202066363794967596116420567, −0.833727128339557577617156526727, −0.15957125003530968475800879426, 0.15957125003530968475800879426, 0.833727128339557577617156526727, 1.40202066363794967596116420567, 1.60962828694916059929954737449, 1.97136371300973585458459343513, 2.26029920126402067189007420165, 2.61575380362978192051842167014, 2.67720231338740483210153844531, 3.28254681563838282624400359252, 3.68620816984602138141416592199, 3.77930030276753349828525289941, 3.84456070130817693611343974002, 4.21199391834556853024353880586, 4.40994731801527051968359674453, 4.77744983512535875085703793078, 4.91832821629773030387593433401, 5.02734117768853056709916644152, 5.14546886745897441810584416304, 5.69265867587008291929648008770, 6.03189454618918634418722357521, 6.18577323589488734932400121700, 6.33564363000852839777055050728, 6.41902946282955143987110423168, 6.62565912602620124035112007357, 7.09566593755943933531611469710

Graph of the $Z$-function along the critical line