Properties

Label 4-35e4-1.1-c1e2-0-14
Degree $4$
Conductor $1500625$
Sign $1$
Analytic cond. $95.6811$
Root an. cond. $3.12756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s + 6·9-s + 8·11-s + 5·16-s − 4·29-s + 18·36-s + 24·44-s + 3·64-s + 32·71-s − 16·79-s + 27·81-s + 48·99-s − 36·109-s − 12·116-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 30·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + ⋯
L(s)  = 1  + 3/2·4-s + 2·9-s + 2.41·11-s + 5/4·16-s − 0.742·29-s + 3·36-s + 3.61·44-s + 3/8·64-s + 3.79·71-s − 1.80·79-s + 3·81-s + 4.82·99-s − 3.44·109-s − 1.11·116-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/2·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1500625\)    =    \(5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(95.6811\)
Root analytic conductor: \(3.12756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1500625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.232771811\)
\(L(\frac12)\) \(\approx\) \(5.232771811\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.771250188868561795391688243002, −9.724662915621575717143485544974, −9.088080049500239296415354148394, −8.952772387457675256535099877117, −8.079528927219190463262967036019, −7.83316777882651927873725804425, −7.24030895518800721395748600639, −7.00666616410248295909397260561, −6.60973483690631765570905823420, −6.46895163930502220218130958741, −5.97896574798438697490533614779, −5.27964669881712485466281931799, −4.77427583873579081767954459657, −3.99216095553573431735843439729, −3.94471686331882774899431803123, −3.47185485966901585591656140513, −2.55727884186039395969986671853, −2.02495550452506870676685756872, −1.36321925300395650269465102503, −1.20481275212509939452365056019, 1.20481275212509939452365056019, 1.36321925300395650269465102503, 2.02495550452506870676685756872, 2.55727884186039395969986671853, 3.47185485966901585591656140513, 3.94471686331882774899431803123, 3.99216095553573431735843439729, 4.77427583873579081767954459657, 5.27964669881712485466281931799, 5.97896574798438697490533614779, 6.46895163930502220218130958741, 6.60973483690631765570905823420, 7.00666616410248295909397260561, 7.24030895518800721395748600639, 7.83316777882651927873725804425, 8.079528927219190463262967036019, 8.952772387457675256535099877117, 9.088080049500239296415354148394, 9.724662915621575717143485544974, 9.771250188868561795391688243002

Graph of the $Z$-function along the critical line