# Properties

 Degree $4$ Conductor $1500625$ Sign $1$ Motivic weight $0$ Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 + 4·11-s − 16-s − 4·71-s − 81-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s − 4·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
 L(s)  = 1 + 4·11-s − 16-s − 4·71-s − 81-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s − 4·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$4$$ Conductor: $$1500625$$    =    $$5^{4} \cdot 7^{4}$$ Sign: $1$ Motivic weight: $$0$$ Character: induced by $\chi_{1225} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(4,\ 1500625,\ (\ :0, 0),\ 1)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$1.329397800$$ $$L(\frac12)$$ $$\approx$$ $$1.329397800$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad5 $$1$$
7 $$1$$
good2$C_2^2$ $$1 + T^{4}$$
3$C_2^2$ $$1 + T^{4}$$
11$C_1$ $$( 1 - T )^{4}$$
13$C_2^2$ $$1 + T^{4}$$
17$C_2^2$ $$1 + T^{4}$$
19$C_1$$\times$$C_1$ $$( 1 - T )^{2}( 1 + T )^{2}$$
23$C_2^2$ $$1 + T^{4}$$
29$C_2$ $$( 1 + T^{2} )^{2}$$
31$C_2$ $$( 1 + T^{2} )^{2}$$
37$C_2^2$ $$1 + T^{4}$$
41$C_2$ $$( 1 + T^{2} )^{2}$$
43$C_2^2$ $$1 + T^{4}$$
47$C_2^2$ $$1 + T^{4}$$
53$C_2^2$ $$1 + T^{4}$$
59$C_1$$\times$$C_1$ $$( 1 - T )^{2}( 1 + T )^{2}$$
61$C_2$ $$( 1 + T^{2} )^{2}$$
67$C_2^2$ $$1 + T^{4}$$
71$C_1$ $$( 1 + T )^{4}$$
73$C_2^2$ $$1 + T^{4}$$
79$C_2$ $$( 1 + T^{2} )^{2}$$
83$C_2^2$ $$1 + T^{4}$$
89$C_1$$\times$$C_1$ $$( 1 - T )^{2}( 1 + T )^{2}$$
97$C_2^2$ $$1 + T^{4}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$