| L(s) = 1 | + (−0.0731 + 0.126i)3-s + (1.17 − 2.02i)5-s + 3.83·7-s + (1.48 + 2.57i)9-s − 3.34·11-s + (3.08 + 5.34i)13-s + (0.171 + 0.296i)15-s + (−2.59 + 4.50i)17-s + (3.01 + 3.14i)19-s + (−0.280 + 0.485i)21-s + (−1.17 − 2.02i)23-s + (−0.244 − 0.423i)25-s − 0.875·27-s + (0.0250 + 0.0434i)29-s − 3.43·31-s + ⋯ |
| L(s) = 1 | + (−0.0422 + 0.0731i)3-s + (0.523 − 0.907i)5-s + 1.44·7-s + (0.496 + 0.859i)9-s − 1.00·11-s + (0.856 + 1.48i)13-s + (0.0442 + 0.0766i)15-s + (−0.630 + 1.09i)17-s + (0.691 + 0.722i)19-s + (−0.0611 + 0.106i)21-s + (−0.244 − 0.423i)23-s + (−0.0489 − 0.0847i)25-s − 0.168·27-s + (0.00466 + 0.00807i)29-s − 0.617·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.097235413\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.097235413\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 19 | \( 1 + (-3.01 - 3.14i)T \) |
| good | 3 | \( 1 + (0.0731 - 0.126i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.17 + 2.02i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 3.83T + 7T^{2} \) |
| 11 | \( 1 + 3.34T + 11T^{2} \) |
| 13 | \( 1 + (-3.08 - 5.34i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.59 - 4.50i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.17 + 2.02i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.0250 - 0.0434i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.43T + 31T^{2} \) |
| 37 | \( 1 - 5.43T + 37T^{2} \) |
| 41 | \( 1 + (-3.64 + 6.31i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.43 - 7.67i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.36 + 9.29i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.59 + 2.76i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.92 + 3.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.46 - 2.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.75 + 9.97i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.744 - 1.28i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.84 + 6.65i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.0875 - 0.151i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.00T + 83T^{2} \) |
| 89 | \( 1 + (-6.77 - 11.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.84 + 3.19i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.770166322590181775265640911425, −8.827231332008786329425121383696, −8.215884898629955445851482035577, −7.59593020689808970203386651789, −6.34199193711463383212115088585, −5.32330839532267357988486093995, −4.77391438896302216697147392592, −3.96996044254100825749289403132, −1.98637835839650462588138682701, −1.57728326419310450036423522362,
1.00313294311505007111857187465, 2.43627777993231955579026729507, 3.28500494723553545414247793033, 4.66083501272467713262795660406, 5.45260765109389513117600446492, 6.30842123485363692564400742133, 7.36202395331450260485383615907, 7.84726949083662395167030584972, 8.853589849623565927586448649874, 9.795457696771280657366040578448