Properties

Label 6-1216e3-1.1-c1e3-0-0
Degree $6$
Conductor $1798045696$
Sign $1$
Analytic cond. $915.444$
Root an. cond. $3.11605$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 2·9-s − 5·11-s − 5·13-s − 15-s + 2·17-s − 3·19-s − 4·21-s + 5·23-s − 4·25-s + 27-s + 9·29-s − 5·33-s + 4·35-s + 6·37-s − 5·39-s + 8·41-s + 17·43-s − 2·45-s + 47-s + 2·51-s − 53-s + 5·55-s − 3·57-s − 23·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 2/3·9-s − 1.50·11-s − 1.38·13-s − 0.258·15-s + 0.485·17-s − 0.688·19-s − 0.872·21-s + 1.04·23-s − 4/5·25-s + 0.192·27-s + 1.67·29-s − 0.870·33-s + 0.676·35-s + 0.986·37-s − 0.800·39-s + 1.24·41-s + 2.59·43-s − 0.298·45-s + 0.145·47-s + 0.280·51-s − 0.137·53-s + 0.674·55-s − 0.397·57-s − 2.99·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{18} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(915.444\)
Root analytic conductor: \(3.11605\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{18} \cdot 19^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.079800883\)
\(L(\frac12)\) \(\approx\) \(1.079800883\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 + T )^{3} \)
good3$A_4\times C_2$ \( 1 - T - T^{2} + 2 T^{3} - p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
5$A_4\times C_2$ \( 1 + T + p T^{2} + 2 T^{3} + p^{2} T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
7$A_4\times C_2$ \( 1 + 4 T + 16 T^{2} + 40 T^{3} + 16 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
11$A_4\times C_2$ \( 1 + 5 T + 31 T^{2} + 102 T^{3} + 31 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
13$A_4\times C_2$ \( 1 + 5 T + 37 T^{2} + 122 T^{3} + 37 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
17$A_4\times C_2$ \( 1 - 2 T + 42 T^{2} - 66 T^{3} + 42 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 - 5 T + 5 T^{2} + 26 T^{3} + 5 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
29$A_4\times C_2$ \( 1 - 9 T + 83 T^{2} - 518 T^{3} + 83 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
31$C_2$ \( ( 1 + p T^{2} )^{3} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{3} \)
41$A_4\times C_2$ \( 1 - 8 T + 103 T^{2} - 528 T^{3} + 103 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 - 17 T + 153 T^{2} - 1094 T^{3} + 153 p T^{4} - 17 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 - T + 69 T^{2} + 162 T^{3} + 69 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 + T + 25 T^{2} - 150 T^{3} + 25 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 + 23 T + 343 T^{2} + 3090 T^{3} + 343 p T^{4} + 23 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 + 3 T + 155 T^{2} + 274 T^{3} + 155 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 - 15 T + 245 T^{2} - 2042 T^{3} + 245 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 - 12 T + 137 T^{2} - 776 T^{3} + 137 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 - 4 T + 152 T^{2} - 258 T^{3} + 152 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 26 T + 421 T^{2} + 4364 T^{3} + 421 p T^{4} + 26 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 + 6 T + 137 T^{2} + 260 T^{3} + 137 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
89$C_6$ \( 1 - 18 T + 251 T^{2} - 2180 T^{3} + 251 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 + 8 T + 271 T^{2} + 1424 T^{3} + 271 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.675914945144312149896043017430, −8.199553804307954836910387026616, −8.111493524236244550195408506123, −7.75063598687218310762449694858, −7.54126444756986047731478531029, −7.48026866249807448115919249834, −7.05969336716660629167093953093, −6.59969434494003073522238608640, −6.53278613069888156445633853751, −6.23605127464563992067311999312, −5.74390013451958866340506432230, −5.53159251365768472653656127994, −5.28318340870946592713702623511, −4.66828916005421355636096400508, −4.50859719447397886383825145621, −4.39662646799123025228796828234, −3.85709883086749048254554586483, −3.51121577448641004749618456170, −3.08242217990960402074232689384, −2.69025241550367804267563357782, −2.64656591827992415844184139122, −2.37077552664400798675387097928, −1.62780565985368304645925316415, −0.930081192474243944491813629973, −0.33241759806540986935438631218, 0.33241759806540986935438631218, 0.930081192474243944491813629973, 1.62780565985368304645925316415, 2.37077552664400798675387097928, 2.64656591827992415844184139122, 2.69025241550367804267563357782, 3.08242217990960402074232689384, 3.51121577448641004749618456170, 3.85709883086749048254554586483, 4.39662646799123025228796828234, 4.50859719447397886383825145621, 4.66828916005421355636096400508, 5.28318340870946592713702623511, 5.53159251365768472653656127994, 5.74390013451958866340506432230, 6.23605127464563992067311999312, 6.53278613069888156445633853751, 6.59969434494003073522238608640, 7.05969336716660629167093953093, 7.48026866249807448115919249834, 7.54126444756986047731478531029, 7.75063598687218310762449694858, 8.111493524236244550195408506123, 8.199553804307954836910387026616, 8.675914945144312149896043017430

Graph of the $Z$-function along the critical line