| L(s) = 1 | + (−0.939 + 1.62i)2-s + (−1.26 − 2.19i)4-s + (0.5 + 0.866i)5-s + 2.87·8-s − 1.87·10-s + (−1.43 + 2.49i)16-s − 0.347·17-s + 0.347·19-s + (1.26 − 2.19i)20-s + (0.766 + 1.32i)23-s + (−0.499 + 0.866i)25-s + (0.939 + 1.62i)31-s + (−1.26 − 2.19i)32-s + (0.326 − 0.565i)34-s + (−0.326 + 0.565i)38-s + ⋯ |
| L(s) = 1 | + (−0.939 + 1.62i)2-s + (−1.26 − 2.19i)4-s + (0.5 + 0.866i)5-s + 2.87·8-s − 1.87·10-s + (−1.43 + 2.49i)16-s − 0.347·17-s + 0.347·19-s + (1.26 − 2.19i)20-s + (0.766 + 1.32i)23-s + (−0.499 + 0.866i)25-s + (0.939 + 1.62i)31-s + (−1.26 − 2.19i)32-s + (0.326 − 0.565i)34-s + (−0.326 + 0.565i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1215 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1215 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6347876740\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6347876740\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| good | 2 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + 0.347T + T^{2} \) |
| 19 | \( 1 - 0.347T + T^{2} \) |
| 23 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.53T + T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.863008625724973196852865620271, −9.448720512671904316600894556204, −8.527593835820825129944882131500, −7.74149437841710070197134530633, −6.93392549603838549551660014616, −6.48323753398819499809014771162, −5.54996344895314981816028837252, −4.82455115323385194506942301479, −3.22863440300120722587320186993, −1.53750201066889805159593740776,
0.836481394621267295993117142369, 2.02760841365534393785105269913, 2.92282612118883291678072368072, 4.18792924045637888091612635364, 4.87192026932947252345106588910, 6.24023653694325247163988929422, 7.56603176206504646875266770371, 8.422664636876819308152657515585, 8.928219778410772529161022570581, 9.711486156444590411319784609202