| L(s) = 1 | + (0.766 + 1.32i)2-s + (−0.673 + 1.16i)4-s + (0.5 − 0.866i)5-s − 0.532·8-s + 1.53·10-s + (0.266 + 0.460i)16-s + 1.87·17-s − 1.87·19-s + (0.673 + 1.16i)20-s + (0.173 − 0.300i)23-s + (−0.499 − 0.866i)25-s + (−0.766 + 1.32i)31-s + (−0.673 + 1.16i)32-s + (1.43 + 2.49i)34-s + (−1.43 − 2.49i)38-s + ⋯ |
| L(s) = 1 | + (0.766 + 1.32i)2-s + (−0.673 + 1.16i)4-s + (0.5 − 0.866i)5-s − 0.532·8-s + 1.53·10-s + (0.266 + 0.460i)16-s + 1.87·17-s − 1.87·19-s + (0.673 + 1.16i)20-s + (0.173 − 0.300i)23-s + (−0.499 − 0.866i)25-s + (−0.766 + 1.32i)31-s + (−0.673 + 1.16i)32-s + (1.43 + 2.49i)34-s + (−1.43 − 2.49i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1215 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1215 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.699554443\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.699554443\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - 1.87T + T^{2} \) |
| 19 | \( 1 + 1.87T + T^{2} \) |
| 23 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + 0.347T + T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02916295591671874411463968394, −8.951086926373562067820260932797, −8.312483262613133812008220675804, −7.58474584808015885704007643643, −6.56996067873206129784059998510, −5.91401246889822356951081292231, −5.14503441570692434650679970820, −4.47767367291054647539826962080, −3.39654279676769974666416316783, −1.66709214923435557140922791929,
1.60691308174696087125175910576, 2.57063535871271363650588059072, 3.42730116950810653028055622756, 4.24986825529568919630353379582, 5.42403670455020529932128691637, 6.10412439818244328671598873798, 7.22932565649043497037887582754, 8.119963643353730992570877378681, 9.444627545998195666975216530512, 10.01594840273205174399204451795