Properties

Label 4-1200e2-1.1-c3e2-0-14
Degree $4$
Conductor $1440000$
Sign $1$
Analytic cond. $5012.96$
Root an. cond. $8.41440$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s − 6·7-s + 27·9-s + 42·11-s + 78·13-s + 102·17-s − 56·19-s + 36·21-s + 48·23-s − 108·27-s − 318·29-s − 52·31-s − 252·33-s + 306·37-s − 468·39-s − 408·41-s − 120·43-s − 180·47-s − 290·49-s − 612·51-s + 402·53-s + 336·57-s + 186·59-s + 340·61-s − 162·63-s − 732·67-s − 288·69-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.323·7-s + 9-s + 1.15·11-s + 1.66·13-s + 1.45·17-s − 0.676·19-s + 0.374·21-s + 0.435·23-s − 0.769·27-s − 2.03·29-s − 0.301·31-s − 1.32·33-s + 1.35·37-s − 1.92·39-s − 1.55·41-s − 0.425·43-s − 0.558·47-s − 0.845·49-s − 1.68·51-s + 1.04·53-s + 0.780·57-s + 0.410·59-s + 0.713·61-s − 0.323·63-s − 1.33·67-s − 0.502·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1440000\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(5012.96\)
Root analytic conductor: \(8.41440\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1440000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.602999632\)
\(L(\frac12)\) \(\approx\) \(2.602999632\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p T )^{2} \)
5 \( 1 \)
good7$D_{4}$ \( 1 + 6 T + 326 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 42 T + 2734 T^{2} - 42 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 6 p T + 5546 T^{2} - 6 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 6 p T + 11402 T^{2} - 6 p^{4} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 56 T + 8598 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 48 T + 24254 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 318 T + 55978 T^{2} + 318 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 52 T + 58782 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 306 T + 94826 T^{2} - 306 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 408 T + 177982 T^{2} + 408 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 120 T + 68150 T^{2} + 120 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 180 T + 128990 T^{2} + 180 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 402 T + 269234 T^{2} - 402 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 186 T + 419038 T^{2} - 186 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 340 T + 388398 T^{2} - 340 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 732 T + 698582 T^{2} + 732 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 36 T + 384046 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 1332 T + 1102034 T^{2} - 1332 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 380 T + 99678 T^{2} + 380 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 984 T + 942182 T^{2} - 984 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1116 T + 1508758 T^{2} - 1116 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 768 T + 1382402 T^{2} + 768 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.478131657047385873086771160621, −9.365006049421048729686998040366, −8.724237432082986856781432388814, −8.489527145532970048176229211555, −7.73911056024936449867241792804, −7.62795954069138429535201246327, −6.84372110389886155498715598437, −6.64004705073133077799422442017, −6.15131461203116827960301539820, −5.95799084770097863095443770661, −5.29361751918668072950608277121, −5.17382705644969217853794916366, −4.25407457691096052783135073048, −4.01241031346673020480048410281, −3.35443132040750663178276035261, −3.28569540606277144488958352111, −1.91641532286767805795984862248, −1.69619500963758275343443964988, −0.892085465030633368401629993636, −0.54384344756174017117190352172, 0.54384344756174017117190352172, 0.892085465030633368401629993636, 1.69619500963758275343443964988, 1.91641532286767805795984862248, 3.28569540606277144488958352111, 3.35443132040750663178276035261, 4.01241031346673020480048410281, 4.25407457691096052783135073048, 5.17382705644969217853794916366, 5.29361751918668072950608277121, 5.95799084770097863095443770661, 6.15131461203116827960301539820, 6.64004705073133077799422442017, 6.84372110389886155498715598437, 7.62795954069138429535201246327, 7.73911056024936449867241792804, 8.489527145532970048176229211555, 8.724237432082986856781432388814, 9.365006049421048729686998040366, 9.478131657047385873086771160621

Graph of the $Z$-function along the critical line