Properties

Label 8-1200e4-1.1-c2e4-0-2
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·11-s + 104·31-s + 120·41-s + 8·61-s − 480·71-s − 9·81-s − 48·101-s − 124·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 2.18·11-s + 3.35·31-s + 2.92·41-s + 8/61·61-s − 6.76·71-s − 1/9·81-s − 0.475·101-s − 1.02·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.06398477399\)
\(L(\frac12)\) \(\approx\) \(0.06398477399\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2^3$ \( 1 + 2594 T^{4} + p^{8} T^{8} \)
11$C_2$ \( ( 1 + 6 T + p^{2} T^{2} )^{4} \)
13$C_2^3$ \( 1 - 55678 T^{4} + p^{8} T^{8} \)
17$C_2^3$ \( 1 - 145726 T^{4} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 622 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 110782 T^{4} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 + 622 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{4} \)
37$C_2^3$ \( 1 - 3244222 T^{4} + p^{8} T^{8} \)
41$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )^{4} \)
43$C_2^3$ \( 1 - 2956702 T^{4} + p^{8} T^{8} \)
47$C_2^3$ \( 1 + 6128834 T^{4} + p^{8} T^{8} \)
53$C_2^3$ \( 1 + 11113634 T^{4} + p^{8} T^{8} \)
59$C_2^2$ \( ( 1 - 878 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{4} \)
67$C_2^3$ \( 1 - 39552286 T^{4} + p^{8} T^{8} \)
71$C_2$ \( ( 1 + 120 T + p^{2} T^{2} )^{4} \)
73$C_2^3$ \( 1 - 46466686 T^{4} + p^{8} T^{8} \)
79$C_2^2$ \( ( 1 - 7006 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 2895458 T^{4} + p^{8} T^{8} \)
89$C_2^2$ \( ( 1 + 6658 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^3$ \( 1 + 175254338 T^{4} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.55407344131615032576316586103, −6.49994079638653908731622960205, −6.39542026536288844496662099382, −6.07171337603881759524851831416, −5.96511496822532849812780138200, −5.61145443792083203660057313036, −5.32050471397772106590872607226, −5.27388554708126221264501896748, −5.08248395027398204444576752464, −4.63048264281876853914591475028, −4.37895707179509980861773323512, −4.35477384833034909998548394738, −4.11668315582681139257306786202, −3.91443760724332416620707391183, −3.25907834594960316842357711469, −3.01160205768175695465272359305, −2.95335267150158216090052527296, −2.60014639425672334863075111385, −2.53269573771362903882498962722, −2.30653915746257481772251066723, −1.54817453605242963864031585183, −1.50096540507825417849013386941, −0.988993051327455225914769412872, −0.68144418631172377052370597822, −0.03997474052942285267603031522, 0.03997474052942285267603031522, 0.68144418631172377052370597822, 0.988993051327455225914769412872, 1.50096540507825417849013386941, 1.54817453605242963864031585183, 2.30653915746257481772251066723, 2.53269573771362903882498962722, 2.60014639425672334863075111385, 2.95335267150158216090052527296, 3.01160205768175695465272359305, 3.25907834594960316842357711469, 3.91443760724332416620707391183, 4.11668315582681139257306786202, 4.35477384833034909998548394738, 4.37895707179509980861773323512, 4.63048264281876853914591475028, 5.08248395027398204444576752464, 5.27388554708126221264501896748, 5.32050471397772106590872607226, 5.61145443792083203660057313036, 5.96511496822532849812780138200, 6.07171337603881759524851831416, 6.39542026536288844496662099382, 6.49994079638653908731622960205, 6.55407344131615032576316586103

Graph of the $Z$-function along the critical line