Properties

Label 8-1200e4-1.1-c1e4-0-13
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $8430.11$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 12·11-s − 28·49-s − 48·59-s + 32·61-s − 24·71-s − 36·99-s + 32·109-s + 46·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 44·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 9-s + 3.61·11-s − 4·49-s − 6.24·59-s + 4.09·61-s − 2.84·71-s − 3.61·99-s + 3.06·109-s + 4.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(8430.11\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.001264976\)
\(L(\frac12)\) \(\approx\) \(3.001264976\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2$ \( ( 1 + p T^{2} )^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 55 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 145 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 151 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.82831561822013082708047393265, −6.70342598585781322552192874014, −6.38493409967277455843294220206, −6.29091755807794665206228127158, −6.26480525978599947341167265002, −6.08549574358512315846666321331, −5.57897812697135616083749446623, −5.51914440579587550867725907657, −5.21136402672063117024022424190, −4.75953269564497565801448055856, −4.75403945014907289465644059732, −4.35118357212342791921834186669, −4.16793754532892976921673650028, −4.10175045680120140708832595382, −3.73295705856304669040381883880, −3.25345264355265023227951918481, −3.18393296070522208788095908421, −3.01048852668052080950416615439, −2.92375189151499788196178862860, −2.07885672709041238434560069773, −1.82032635339650145079287179848, −1.56978298991214834476350421410, −1.53517393047096860460140843450, −0.870554003498343758620055650610, −0.40257332936735808558594623100, 0.40257332936735808558594623100, 0.870554003498343758620055650610, 1.53517393047096860460140843450, 1.56978298991214834476350421410, 1.82032635339650145079287179848, 2.07885672709041238434560069773, 2.92375189151499788196178862860, 3.01048852668052080950416615439, 3.18393296070522208788095908421, 3.25345264355265023227951918481, 3.73295705856304669040381883880, 4.10175045680120140708832595382, 4.16793754532892976921673650028, 4.35118357212342791921834186669, 4.75403945014907289465644059732, 4.75953269564497565801448055856, 5.21136402672063117024022424190, 5.51914440579587550867725907657, 5.57897812697135616083749446623, 6.08549574358512315846666321331, 6.26480525978599947341167265002, 6.29091755807794665206228127158, 6.38493409967277455843294220206, 6.70342598585781322552192874014, 6.82831561822013082708047393265

Graph of the $Z$-function along the critical line