Properties

Label 4-1200e2-1.1-c1e2-0-2
Degree $4$
Conductor $1440000$
Sign $1$
Analytic cond. $91.8156$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s − 4·11-s − 10·19-s − 20·29-s + 6·31-s − 16·41-s + 5·49-s − 20·59-s + 14·61-s + 16·71-s + 81-s + 4·99-s + 24·101-s − 10·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 25·169-s + 10·171-s + 173-s + ⋯
L(s)  = 1  − 1/3·9-s − 1.20·11-s − 2.29·19-s − 3.71·29-s + 1.07·31-s − 2.49·41-s + 5/7·49-s − 2.60·59-s + 1.79·61-s + 1.89·71-s + 1/9·81-s + 0.402·99-s + 2.38·101-s − 0.957·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.92·169-s + 0.764·171-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1440000\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(91.8156\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1440000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4917795709\)
\(L(\frac12)\) \(\approx\) \(0.4917795709\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 125 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.949907055488745137097779037514, −9.578495447981886821356180020888, −9.064836626535550633354138233983, −8.716295803944429446485180625998, −8.340335244204874851631296247914, −7.86234145614925000217120166161, −7.66888427676943697701842596601, −7.02800850792565103921338730538, −6.64656603942778753571332266857, −6.16619618781521749947669039417, −5.77248322643970656018602756557, −5.19405509753699174454130377229, −4.99944718464177753990442637794, −4.29625234040689046689858087905, −3.78438288556302106727629890536, −3.40900263759224670531452537491, −2.63293869948519873765064966244, −2.10770564300735768058513110529, −1.72634591722671636220940902706, −0.28079064034016865538553634585, 0.28079064034016865538553634585, 1.72634591722671636220940902706, 2.10770564300735768058513110529, 2.63293869948519873765064966244, 3.40900263759224670531452537491, 3.78438288556302106727629890536, 4.29625234040689046689858087905, 4.99944718464177753990442637794, 5.19405509753699174454130377229, 5.77248322643970656018602756557, 6.16619618781521749947669039417, 6.64656603942778753571332266857, 7.02800850792565103921338730538, 7.66888427676943697701842596601, 7.86234145614925000217120166161, 8.340335244204874851631296247914, 8.716295803944429446485180625998, 9.064836626535550633354138233983, 9.578495447981886821356180020888, 9.949907055488745137097779037514

Graph of the $Z$-function along the critical line