Properties

Label 8-120e4-1.1-c1e4-0-3
Degree $8$
Conductor $207360000$
Sign $1$
Analytic cond. $0.843011$
Root an. cond. $0.978879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 6·9-s − 3·16-s + 16·19-s − 10·25-s − 6·36-s − 28·49-s + 7·64-s − 16·76-s + 27·81-s + 10·100-s + 44·121-s + 127-s + 131-s + 137-s + 139-s − 18·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 96·171-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1/2·4-s + 2·9-s − 3/4·16-s + 3.67·19-s − 2·25-s − 36-s − 4·49-s + 7/8·64-s − 1.83·76-s + 3·81-s + 100-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3/2·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 7.34·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.843011\)
Root analytic conductor: \(0.978879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.162814256\)
\(L(\frac12)\) \(\approx\) \(1.162814256\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
good7$C_2$ \( ( 1 + p T^{2} )^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( ( 1 + 154 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - p T^{2} )^{4} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.808524879053431654339438705285, −9.772644300205767193251000508362, −9.426464548989252731432720387646, −9.287519628760410954942504180246, −9.100050428973946658486016822351, −8.293006408197617641650026815652, −8.252627641704206271703064071715, −7.955335915614753098599944535934, −7.60429980742977750577878436097, −7.21442206638901471156076448920, −7.18814680219832983582668286538, −6.93955839577251695221461704680, −6.33051875775614412315787853556, −6.05532064796848729882870449626, −5.79089491580389829527964502812, −5.19345208285814782747346326183, −4.90396513482860089923114534067, −4.79833409731623754548422130776, −4.37537421501178733384641744417, −3.78898483280470033170864145423, −3.46359795232067585996238519145, −3.30604674302533284706138136287, −2.44853504103337796203918483388, −1.72819469709323362843672116265, −1.24871830823032357325157849446, 1.24871830823032357325157849446, 1.72819469709323362843672116265, 2.44853504103337796203918483388, 3.30604674302533284706138136287, 3.46359795232067585996238519145, 3.78898483280470033170864145423, 4.37537421501178733384641744417, 4.79833409731623754548422130776, 4.90396513482860089923114534067, 5.19345208285814782747346326183, 5.79089491580389829527964502812, 6.05532064796848729882870449626, 6.33051875775614412315787853556, 6.93955839577251695221461704680, 7.18814680219832983582668286538, 7.21442206638901471156076448920, 7.60429980742977750577878436097, 7.955335915614753098599944535934, 8.252627641704206271703064071715, 8.293006408197617641650026815652, 9.100050428973946658486016822351, 9.287519628760410954942504180246, 9.426464548989252731432720387646, 9.772644300205767193251000508362, 9.808524879053431654339438705285

Graph of the $Z$-function along the critical line