Properties

Degree 2
Conductor $ 2^{2} \cdot 3 $
Sign $-0.703 - 0.710i$
Motivic weight 15
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−171. − 57.9i)2-s + (−3.75e3 − 526. i)3-s + (2.60e4 + 1.98e4i)4-s + 1.72e5i·5-s + (6.12e5 + 3.07e5i)6-s − 3.89e6i·7-s + (−3.31e6 − 4.91e6i)8-s + (1.37e7 + 3.95e6i)9-s + (9.99e6 − 2.95e7i)10-s + 4.37e7·11-s + (−8.72e7 − 8.82e7i)12-s − 4.08e7·13-s + (−2.25e8 + 6.67e8i)14-s + (9.08e7 − 6.47e8i)15-s + (2.84e8 + 1.03e9i)16-s − 1.04e9i·17-s + ⋯
L(s)  = 1  + (−0.947 − 0.319i)2-s + (−0.990 − 0.139i)3-s + (0.795 + 0.606i)4-s + 0.987i·5-s + (0.893 + 0.448i)6-s − 1.78i·7-s + (−0.559 − 0.828i)8-s + (0.961 + 0.275i)9-s + (0.315 − 0.935i)10-s + 0.677·11-s + (−0.703 − 0.710i)12-s − 0.180·13-s + (−0.571 + 1.69i)14-s + (0.137 − 0.978i)15-s + (0.264 + 0.964i)16-s − 0.620i·17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 12 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.703 - 0.710i)\, \overline{\Lambda}(16-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 12 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & (-0.703 - 0.710i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(12\)    =    \(2^{2} \cdot 3\)
\( \varepsilon \)  =  $-0.703 - 0.710i$
motivic weight  =  \(15\)
character  :  $\chi_{12} (11, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 12,\ (\ :15/2),\ -0.703 - 0.710i)$
$L(8)$  $\approx$  $0.0495994 + 0.118836i$
$L(\frac12)$  $\approx$  $0.0495994 + 0.118836i$
$L(\frac{17}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + (171. + 57.9i)T \)
3 \( 1 + (3.75e3 + 526. i)T \)
good5 \( 1 - 1.72e5iT - 3.05e10T^{2} \)
7 \( 1 + 3.89e6iT - 4.74e12T^{2} \)
11 \( 1 - 4.37e7T + 4.17e15T^{2} \)
13 \( 1 + 4.08e7T + 5.11e16T^{2} \)
17 \( 1 + 1.04e9iT - 2.86e18T^{2} \)
19 \( 1 - 4.29e9iT - 1.51e19T^{2} \)
23 \( 1 + 2.27e10T + 2.66e20T^{2} \)
29 \( 1 - 1.81e10iT - 8.62e21T^{2} \)
31 \( 1 - 1.17e11iT - 2.34e22T^{2} \)
37 \( 1 + 1.02e12T + 3.33e23T^{2} \)
41 \( 1 + 1.37e12iT - 1.55e24T^{2} \)
43 \( 1 - 7.55e11iT - 3.17e24T^{2} \)
47 \( 1 + 2.91e12T + 1.20e25T^{2} \)
53 \( 1 - 1.31e13iT - 7.31e25T^{2} \)
59 \( 1 + 1.15e12T + 3.65e26T^{2} \)
61 \( 1 + 1.08e13T + 6.02e26T^{2} \)
67 \( 1 - 5.22e13iT - 2.46e27T^{2} \)
71 \( 1 - 2.62e12T + 5.87e27T^{2} \)
73 \( 1 - 3.29e13T + 8.90e27T^{2} \)
79 \( 1 + 1.56e14iT - 2.91e28T^{2} \)
83 \( 1 + 3.43e13T + 6.11e28T^{2} \)
89 \( 1 - 5.29e14iT - 1.74e29T^{2} \)
97 \( 1 + 9.09e14T + 6.33e29T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−17.13914071382601124031803828552, −16.16127196459738308901141189913, −14.05738088953298028634150392331, −12.09658619878275841003831281254, −10.76586312252723415625392767219, −10.10097486523246096663351885242, −7.47437219058715600888225758335, −6.60582057691969999668413445450, −3.77841505632932112268648054264, −1.37505467498819744467892916753, 0.080918165437846444868058449151, 1.76674585203865871646199227512, 5.15670028535260465864245588812, 6.31937405732788622348410523290, 8.527248218983456804193855197977, 9.625592567030713608313431943407, 11.52825435591593359543340445905, 12.41860211625193059850518519539, 15.18104349182339337720934716600, 16.11838479105090251881853577587

Graph of the $Z$-function along the critical line