| L(s) = 1 | + (−1.20 + 2.09i)2-s + (−1.91 − 3.31i)4-s + (−1.91 + 3.31i)5-s + (−2.5 + 0.866i)7-s + 4.41·8-s + (−4.62 − 8.00i)10-s + (−1.91 − 3.31i)11-s + 2.82·13-s + (1.20 − 6.27i)14-s + (−1.49 + 2.59i)16-s + (−1.82 − 3.16i)17-s + (0.5 − 0.866i)19-s + 14.6·20-s + 9.24·22-s + (−0.914 + 1.58i)23-s + ⋯ |
| L(s) = 1 | + (−0.853 + 1.47i)2-s + (−0.957 − 1.65i)4-s + (−0.856 + 1.48i)5-s + (−0.944 + 0.327i)7-s + 1.56·8-s + (−1.46 − 2.53i)10-s + (−0.577 − 0.999i)11-s + 0.784·13-s + (0.322 − 1.67i)14-s + (−0.374 + 0.649i)16-s + (−0.443 − 0.768i)17-s + (0.114 − 0.198i)19-s + 3.27·20-s + 1.97·22-s + (−0.190 + 0.330i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3802803195\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3802803195\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (1.20 - 2.09i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.91 - 3.31i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.91 + 3.31i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 + (1.82 + 3.16i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (0.914 - 1.58i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.82T + 29T^{2} \) |
| 31 | \( 1 + (-1.58 - 2.74i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.585 - 1.01i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 7.65T + 41T^{2} \) |
| 43 | \( 1 + 12.6T + 43T^{2} \) |
| 47 | \( 1 + (-3.08 + 5.34i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1 + 1.73i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.41 - 9.37i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.32 + 12.6i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.34T + 71T^{2} \) |
| 73 | \( 1 + (-5.15 - 8.93i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.17 - 2.02i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.17T + 83T^{2} \) |
| 89 | \( 1 + (-5.41 + 9.37i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16.8T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.846588323822392261282494779628, −8.550424039715521486568395933682, −8.365507246535292898652055355058, −7.16752289837293546859392416953, −6.78242389420464245946818812207, −6.13265707886720857768484133400, −5.18753776104196125701391248354, −3.58821010623645382947533449766, −2.85540912777409563501934767219, −0.31881857102812892313305110498,
0.823986142426020843845012321275, 1.97683138588962601431209226804, 3.37715543550858345895631610487, 4.08889344020454856569104777149, 4.91954512135716712612353027577, 6.39911898033500299256491633855, 7.66347294132190768843180388578, 8.398247007132390861484565174982, 8.860526706448331049178883160646, 9.809404045943410626281343786925