| L(s) = 1 | + (1 + 1.73i)4-s + (1 − 1.73i)5-s + (0.5 − 2.59i)7-s + (−1.5 − 2.59i)11-s + 2·13-s + (−1.99 + 3.46i)16-s + (−3.5 − 6.06i)17-s + (0.5 − 0.866i)19-s + 3.99·20-s + (2.5 − 4.33i)23-s + (0.500 + 0.866i)25-s + (5 − 1.73i)28-s − 2·29-s + (−5 − 8.66i)31-s + (−4 − 3.46i)35-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)4-s + (0.447 − 0.774i)5-s + (0.188 − 0.981i)7-s + (−0.452 − 0.783i)11-s + 0.554·13-s + (−0.499 + 0.866i)16-s + (−0.848 − 1.47i)17-s + (0.114 − 0.198i)19-s + 0.894·20-s + (0.521 − 0.902i)23-s + (0.100 + 0.173i)25-s + (0.944 − 0.327i)28-s − 0.371·29-s + (−0.898 − 1.55i)31-s + (−0.676 − 0.585i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.821548284\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.821548284\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1 + 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + (3.5 + 6.06i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.5 + 4.33i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (5 + 8.66i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + (2.5 - 4.33i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 - 3.46i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7 - 12.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10T + 71T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9T + 83T^{2} \) |
| 89 | \( 1 + (-9 + 15.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.380402981580854172671331157514, −8.784198014147347797834613386619, −7.939792917997030024454190316784, −7.19834983444193913271334574946, −6.40269430681634937224962408065, −5.25021013409811545626589968394, −4.37708533545215457938505764914, −3.36949448772577536712305346600, −2.28271469726049107960112444562, −0.75970907950683873875276380234,
1.75372935083218540618336424563, 2.32661254643518417828854216703, 3.63407390337203064714297090050, 5.12836215565507625946555648022, 5.69253610454756017364130226273, 6.55986678383901380308617186732, 7.15794408352459252249858922352, 8.387954133710412312981801478666, 9.186089208171209927997694413526, 10.01475256370326815411411489735